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ABSTRACT

Recurrent neural network language models have enjoyed great
success in speech recognition, partially due to their ability to model
longer-distance context than word n-gram models. In recurrent
neural networks (RNNs), contextual information from past inputs
is modeled with the help of recurrent connections at the hidden
layer, while Long Short-Term Memory (LSTM) neural networks are
RNNs that contain units that can store values for arbitrary amounts
of time. While conventional unidirectional networks predict outputs
from only past inputs, one can build bidirectional networks that also
condition on future inputs. In this paper, we propose applying bidi-
rectional RNNs and LSTM neural networks to language modeling
for speech recognition. We discuss issues that arise when utilizing
bidirectional models for speech, and compare unidirectional and
bidirectional models on an English Broadcast News transcription
task. We find that bidirectional RNNs significantly outperform
unidirectional RNNs, but bidirectional LSTMs do not provide any
further gain over their unidirectional counterparts.

Index Terms— Language modeling, recurrent neural networks,
long short term memory, bidirectional neural networks

1. INTRODUCTION

Recurrent neural networks have been shown to yield superior perfor-
mance in language modeling over a wide range of domains [1, 2, 3].
In contrast to feedforward neural networks, RNNs are not limited
to a fixed number of past inputs. Instead, an RNN can potentially
model long-range dependencies of arbitrary length by utilizing re-
current connections in its hidden layer. For RNN language models,
this translates to predicting the probability of the next word using
many more previous words than the typical 2–4 used in a word n-
gram model. However, in practice it has been found that RNNs can-
not effectively use information beyond about 5–10 time steps back,
due to the well-known “vanishing gradient” problem [4]. The gra-
dient of the error function decays exponentially over time, reducing
the influence of inputs far back in time.

Long Short-Term Memory (LSTM) neural networks address this
limitation by replacing the nonlinear units in the hidden layer of an
RNN with memory blocks that can store values for arbitrary amounts
of time [5]. Multiplicative gates are used to read, write, and clear the
values of these blocks. LSTM neural networks have been shown
to give excellent performance for automatic speech recognition. In
acoustic modeling, LSTM models outperform state-of-the-art deep
neural networks [6, 7] while LSTM language models yield better
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performance than conventional n-gram and RNN language mod-
els [8, 9].

Conventional RNN and LSTM models are unidirectional; i.e.,
input data is processed in temporal order and output probabilities
are estimated conditioning only on past context. While future con-
text is clearly also important, unidirectional models do not explicitly
model the effect of future words on the probability of the current
word. Instead, this dependence is captured only via the effect of the
current word on the probabilities of future words. Intuitively, there
may be benefit from explicitly modeling dependencies in both direc-
tions; i.e., to build models going both forward and backward in time
to reap the benefits of model combination.

Bidirectional RNNs provide an elegant framework for fusing in-
formation from past and future contexts together [10]. In bidirec-
tional RNNs, an extra hidden layer, the backward hidden layer, is
trained by processing the input data in reverse order. The original
hidden layer (or forward hidden layer) and the backward hidden
layer are not directly connected; instead, they both connect to the
same output layer. Bidirectional LSTMs are obtained by replacing
the hidden units of a bidirectional RNN with memory blocks [11].
Bidirectional RNNs and LSTMs have been successfully applied to
tasks such as handwriting recognition and acoustic modeling [12, 6].

In this paper, we propose applying bidirectional RNNs and
LSTMs to language modeling for speech recognition. Unlike for
unidirectional language models, conditional word probabilities from
bidirectional models cannot be correctly combined using the chain
rule to compute the probability of a complete utterance. In addition,
conditioning on future inputs complicates speech recognition decod-
ing. We discuss how we address these issues, and then compare both
unidirectional and bidirectional RNNs and LSTMs on an English
Broadcast News transcription task. We achieve an improvement of
0.2% absolute for a bidirectional RNN as compared to its unidirec-
tional counterpart, but achieve no gains with bidirectional LSTMs
as compared to unidirectional models.

Several other methods have been proposed for explicitly incor-
porating future information when computing the probability of the
current output. In acoustic modeling, one can condition on future
acoustic inputs while still having a valid left-to-right model; this is
equivalent to delaying outputs for a few time steps [7]. Another
method, applied to language modeling for machine translation, is to
simply train two independent models, one on the original input and
one on the reversed input [13]. Both models can be used to compute
the probability of an utterance; these probabilities are combined dur-
ing evaluation.

The rest of the paper is organized as follows: Section 2 briefly
explains the RNN models used in the paper. Experiments and results
are described in Section 3, and Section 4 presents conclusions.
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Fig. 1. RNN architecture unfolded in time.
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Fig. 2. Bidirectional RNN architecture unfolded in time.

2. NEURAL NETWORKS

2.1. Recurrent Neural Networks

Recurrent neural networks are generally used to model sequential
data. The power of an RNN comes from keeping a representation
of all previous inputs in its hidden state. Fig. 1 shows a basic RNN
architecture unfolded in time for two time steps. As shown in the
figure, the hidden state at time t depends on the input at time t as
well as the hidden state at time t− 1, which depends on the input at
time t− 1 as well as the hidden state at time t− 2, etc.

Formally, given an input vector sequence X = {x1, · · · , xT }
and an output vector sequence Y = {y1, · · · , yT }, RNN activations
are calculated as follows:

ht = tanh(Wxhxt +Whhht−1 + bh) (1)
yt = Whyht + by (2)

where ht denotes the hidden layer vector, Wxh denotes the input-
to-hidden-layer weight matrix, Whh denotes the hidden-to-hidden-
layer weight matrix and Why denotes the output-to-hidden-layer
weight matrix. The values bh and by denote the hidden and output
layer biases, respectively.

In RNN language modeling, the conditional word probabilities
P (wt|wt−1, ht−2) are calculated as follows:

p(wt = i|wt−1, ht−2) =
exp(yit)∑N
j=1 exp(y

j
t )

(3)

where yit represents the ith element of the output vector yt. Here,
each output target corresponds to a word in the vocabulary. The
probability of a word sequence W = w1, w2, · · · , wT is calculated
by multiplying conditional word probabilities, given as

P (W ) =

T∏
t=1

p(wt|wt−1, ht−2) (4)

The advantage of RNN language models as compared to word or
class n-gram models and feedforward neural networks is that they
do not restrict the history to the preceding n− 1 words.

2.2. Long Short-Term Memory Neural Networks

Even though RNNs potentially utilize arbitrarily long histories, in
practice the effective context length of an RNN is quite limited.
Long Short-Term Memory neural networks were proposed to rem-
edy this limitation. An LSTM neural network replaces the nonlinear
units in the hidden layer of an RNN with memory blocks containing
memory cells for storing values; and multiplicative gates for reading
(output), writing (input), and resetting (forget) these values. A mem-
ory cell can be used to store information for long periods, and gates
collect activations from both inside and outside a memory block to
update a memory cell’s value.

The LSTM equations are given as follows:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (5)
ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (6)
ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc) (7)
ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (8)
ht = ot tanh(ct) (9)

where it, ft, ot and ct represent the input gate, forget gate, output
gate and cell activation vectors at time t, respectively. The matrices
W∗∗ denote the weight matrices between various layers, gates, and
cells; e.g., Wxi represents the weight matrix between the input layer
and the input gates. The gate and cell bias terms are denoted as bi,
bf , bo and bc; and σ(·) is the logistic sigmoid function. For lan-
guage modeling, after computing ht, conditional word probabilities
P (wt|wt−1, ht−2) are calculated using Eqs. (2) and (3).

2.3. Bidirectional Recurrent Neural Networks

Bidirectional RNNs exploit both the past and future context by pro-
cessing the input data in both directions. Figure 2 shows a bidirec-
tional RNN architecture unfolded in time for two time steps. As
shown in the figure, bidirectional RNNs compute a forward hidden
layer hF

t by iterating through the input sequence from t = 1, . . . , T ,
and a backward hidden layer hB

t by iterating through the input se-
quence from t = T, . . . , 1. These two hidden layers are combined
into a single output layer using the following equations:

hF
t = tanh(WF

xhxt +WF
hhh

F
t−1 + bFh ) (10)

hB
t = tanh(WB

xhxt +WB
hhh

B
t+1 + bBh ) (11)

yt = WF
hyh

F
t +WB

hyh
B
t + by (12)
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Bidirectional LSTMs are obtained by replacing the hidden layer ac-
tivations with memory blocks.

Note that in language modeling, the output from the last time
step is the input for the next time step.1 With bidirectional models,
this causes circular dependencies to arise when combining probabil-
ities from multiple time steps. Unlike with unidirectional models,
multiplying individual conditional probabilities P (wt|wt − 1, ht −
2, wt + 1, ht + 2) from a bidirectional language model does not
compute a true likelihood, but rather a pseudolikelihood. Still, it
is straightforward to optimize the pseudolikelihood of training data
rather than its likelihood during model training, and this is in fact
what we do.

3. EXPERIMENTS

3.1. Experimental Set-up

We performed experiments on an English Broadcast News task.
The baseline system is based on the 2007 IBM GALE speech tran-
scription system [14]. The discriminatively-trained speaker-adaptive
acoustic model is trained on 430h of Broadcast News audio. The
baseline language model is a conventional word 4-gram model
trained on a total of 350M words from multiple sources, and the
vocabulary is about 84K words. The held-out set consists of the
reference transcriptions of the rt03 and dev04 test sets and contains
about 48K words. The test set is the rt04 test set, containing ap-
proximately 4 hours of data. The baseline language model yields a
word-error rate (WER) of 13.0% on this test set.

3.2. Training RNN and LSTM Language Models

RNN and LSTM language models are trained on a 12M-word sub-
set of the original 350M-word corpus. We implemented training al-
gorithms for the unidirectional and bidirectional RNN and LSTM
language models using the Theano library [15]. The RNN/LSTM
models are trained on a GPU using back propagation through time
with mini-batch updates. In mini-batch training, a bunch of sen-
tences are propagated through the network independently and the
network parameters are updated after processing all of the words in
the sentences in the mini-batch. To take maximal advantage of the
fast matrix operations available on a GPU, each sentence in a mini-
batch should be of the same length. However, there can be huge
variability in sentence length, especially in the Broadcast News do-
main. While shorter sentences can be padded with special symbols
to equalize their lengths, doing so limits the potential speed-up ob-
tained from using a GPU.

In order to efficiently train RNN/LSTM models on GPUs, we
first concatenate all of the sentences in the training data and then split
this long word sequence into equal lengths. The sequence length is
set to 18 words, the average sentence length in the training data. We
use 8 fixed-length sequences in each mini-batch in our experiments.
At the beginning of training, the initial hidden state vector at t = 0
is initialized with all zeros. After processing the word sequences
in one mini-batch, the initial hidden state vector is updated as well
as the other network parameters; these are utilized to initialize the
hidden state vectors for the next batch. When evaluating a model,
each sentence in the test data is processed independently by initial-
izing the hidden state vector to its latest updated value. Note that

1In contrast, in acoustic modeling, the predicted outputs are context-
dependent phonetic states while the inputs are features derived from the
speech signal.

Perplexity WER (%)
Baseline 133.2 13.0
Baseline + uni-RNN 123.2 12.8
Baseline + uni-LSTM 114.1 12.6

Table 1. Perplexities and WERs for unidirectional RNN and LSTM
models linearly interpolated with the baseline model.

our approach may not yield optimal performance due to the arbi-
trary locations of word sequence boundaries. However, our results
indicate that this algorithm makes a reasonable trade-off between
training speed and performance. Another approach proposed for ef-
ficient RNNLM training on GPUs is to splice sentences together to
form approximately equal-length chunks, to minimize the amount of
padding required to equalize batch sizes [16].

The computation required to train or evaluate a neural net-
work language model is generally dominated by the multiplications
needed to compute the output layer. In order to reduce this cost, we
restrict the output vocabulary to the 20K most frequent words in the
vocabulary. All words outside of this output vocabulary are mapped
to the out-of-shortlist class; the probabilities of words in this class
are assumed to be equally likely. Partitioning the output layer into
classes can also be used to reduce the computational complexity
of neural network language models [3, 17]. In order to reduce the
overall number of parameters, we use a projection layer at the input.
Each word in the vocabulary is mapped to a d-dimensional continu-
ous feature vector via a weight matrix shared across word positions.
In Eq. (1), xt represents the continuous feature representation of
wt, the word at time t. Continuous feature vector representations of
words as well as the corresponding weight matrices and biases are
learned using back propagation through time.

Unidirectional and bidirectional RNN and LSTM language
models are trained using a 180-dimensional linear projection layer,
a 300-dimensional hidden layer and a 20K dimensional output layer.
Note that the number of parameters for each network is different
even though they all have the same projection layer, hidden layer
and output layer dimensions. LSTMs utilize approximately 4 times
more parameters than RNNs due to the replacement of hidden units
with memory blocks. Bidirectional models utilize approximately
2 times more parameters than their unidirectional counterparts due
to the computation of a backward hidden state in addition to the
forward hidden state.

3.3. Results

While there have been recent efforts to apply RNNLMs directly in
speech recognition decoding [18, 19], most past work has evalu-
ated RNNLMs via N -best list rescoring due to their computational
expense. As bidirectional models condition word probabilities on
words arbitrarily far in the future, it is especially challenging to eval-
uate these models using first-pass decoding or lattice rescoring. On
the other hand, it is straightforward to use bidirectional models to
rescore N -best lists.

We evaluate unidirectional and bidirectional RNN and LSTM
language models by rescoring 50-best lists obtained by decoding the
rt04 test set with the baseline acoustic and language models. The
unidirectional models are linearly interpolated with the baseline lan-
guage model before evaluation and the interpolation weights are cho-
sen to minimize held-out set perplexity; a weight of 0.3 was found
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WER (%)
Baseline 13.0
Baseline + uni-RNN 12.7
Baseline + bi-RNN 12.5
Baseline + uni-LSTM 12.4
Baseline + bi-LSTM 12.4

Table 2. WERs for unidirectional and bidirectional RNN and LSTM
models log-linearly interpolated with the baseline model.

for the RNN and a weight of 0.4 was found for the LSTM. The per-
plexity and word-error rate results for the unidirectional models are
given in Table 1. The LSTM language model yields around 15%
relative improvement in perplexity on top of the baseline language
model and around 7% relative improvement on top of the RNN lan-
guage model. The LSTM language model gives a 0.4% absolute
WER improvement over the baseline (12.6% vs. 13.0%); this differ-
ence is statistically significant at p < 0.001.2 It also outperforms
the RNN language model by 0.2% absolute in WER (significant at
p = 0.008).

Conditional word probabilities obtained from a bidirectional
model are conditioned on future inputs in addition to past inputs,
while the baseline model is a undirectional model conditioning word
probabilities only on past inputs. It is unclear that it makes sense to
interpolate bidirectional and unidirectional probabilities at the word
level, especially since interpolated word probabilities will be multi-
plied together to compute utterance probabilities using an equation
analogous to Eq. (4). As noted earlier, the product of conditional
word probabilities from a bidirectional model is a pseudolikelihood
rather than a likelihood.

Instead, we interpolate bidirectional models with the baseline
model at the sentence level rather than the word level. We use the
bidirectional model to compute the log pseudolikelihood of each hy-
pothesis and treat this as another score to be log-linearly interpolated
with the baseline language model log-likelihood score and the acous-
tic model score. The log-linear interpolation weights are chosen to
minimize the WER on the dev04 set using the simplex algorithm
implementation from the SRILM toolkit [20].

The results are given in Table 2. Perplexity results are omitted
since it is not straightforward to compute a valid perplexity with a
bidirectional language model. We also report log-linear interpola-
tion results with the unidirectional models to provide a fair compar-
ison of unidirectional and bidirectional models. Unidirectional and
bidirectional models are indicated with the “uni-” and “bi-” prefixes,
respectively. If we compare the WERs in Tables 1 and 2 for the uni-
directional models, we see that log-linear interpolation yields lower
WERs than linear interpolation. One possible explanation is that
choosing weights to optimize perplexity (as was done with linear
interpolation) is less than optimal when evaluating word-error rates.

The combination of the baseline model with the unidirectional
RNN yields 0.3% absolute improvement in WER over the base-
line (significant at p < 0.001). The combination of the baseline
and bidirectional RNN models reduces the WER from 13.0% to
12.5%, yielding a 0.5% absolute improvement (significant at p <
0.001). The combination of the baseline with the unidirectional
LSTM model yields a 0.6% improvement over the baseline (signif-
icant at p < 0.001), our best result. However, no further gains are

2Statistical significance is measured by the NIST MAPSSWE test.

obtained with a bidirectional LSTM as compared to its unidirectional
counterpart.

4. CONCLUSION

In this paper, we compare unidirectional and bidirectional RNNs and
LSTMs for language modeling in speech recognition. We discuss
the issues that arise in training and evaluating bidirectional language
models, propose a method for efficiently training RNNs on a GPU,
and show how pseudolikelihoods can be effectively combined with
other scores in a speech recognition system. Our experiments on the
Broadcast News transcription task indicate:
• LSTM language models are significantly better than RNN

language models by 0.3% absolute in WER (significant at
p < 0.001 ) and 0.6% absolute over the baseline (significant
at p < 0.001).

• Bidirectional RNNs outperform unidirectional RNNs by
0.2% absolute (significant at p < 0.05). This is an en-
couraging result demonstrating the potential of bidirectional
networks in language modeling.

• Bidirectional LSTMs do not yield any additional gain over
unidirectional LSTM models. Further investigation is needed
to understand this behavior with larger data sets. One possible
factor is the limited number of N-best hypotheses (50) used
in our experiments.
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