UNNORMALIZED EXPONENTIAL AND NEURAL NETWORK LANGUAGE MODELS

Abhinav Sethy, Stanley Chen, Ebru Arisoy, Bhuvana Ramabhadran

IBM T.J. Watson Research Center, Yorktown Heights, NY, USA

ABSTRACT

Model M, an exponential class-based language model, and neu-
ral network language models (NNLM’s) have outperformed word
n-gram language models over a wide range of tasks. However, these
gains come at the cost of vastly increased computation when calcu-
lating word probabilities. For both models, the bulk of this compu-
tation involves evaluating the softmax function over a large word or
class vocabulary to ensure that probabilities sum to 1. In this paper,
we study unnormalized variants of Model M and NNLM’s, whereby
the softmax function is simply omitted. Accordingly, model training
must be modified to encourage scores to sum close to 1. In this pa-
per, we demonstrate up to a factor of 35 faster n-gram lookups with
unnormalized models over their normalized counterparts, while still
yielding state-of-the-art performance in WER (10.2 on the English
broadcast news rt04 set).

Index Terms— Model M, unnormalized models, neural net-
work language models, fast lookup.

1. INTRODUCTION

Neural network language models and Model M have emerged as two
techniques that have shown consistent gains over word n-gram mod-
els in a variety of tasks. For example, speech recognition word-error
rate reductions of 5% relative and higher have been reported for nu-
merous domains [1, 2, 3]. However, word n-gram models still re-
main dominant in real-word applications because word probabilities
can be computed extremely quickly, requiring only O(n) arithmetic
operations per lookup. In constrast, NNLM’s and Model M require
summing over a large word or class vocabulary to compute an ex-
plicit normalization term that ensures probabilities sum to 1.

In particular, both of these models express conditional probabil-
ities p(y|z) using the softmax function for normalization

(@)

5, e v

plylz) =

where s(z,y) is a score related to how frequently the output token
y follows the history . For a word n-gram model the token y is
the current word and for a class model it is the class of the current
word y. The history x is a representation of the past n—1 words. For
exponential models such as Model M, a score s(z, y) is computed by
summing \; parameters for each active feature f;(x,y) # 0, while
for NNLM’s, the s(x, y) are the outputs of the previous layer.
Computing a single probability using eq. (1) requires summing
s(z,y’) for every possible 4’ and is thus expensive. One can reduce
computation greatly by simply omitting the softmax; i.e., by return-
ing unnormalized scores e**¥) rather than normalized probabilities
p(y|x). While unnormalized scores can potentially behave very dif-
ferently than probabilities, model training can be modified to encour-
age scores ¢ to sum to near 1 for each z, just as probabilities

978-1-4673-6997-8/15/$31.00 ©2015 IEEE

5416

do [4]. We hope that if the sum of scores is close to one without nor-
malization we can reduce the score computation time significantly
without taking a performance hit.

In this paper, we consider unnormalized variants of Model M
and NNLM’s. We analyze the potential speed-up for each model,
survey previous training methods, and show how an unnormalized
training method for Model M can be applied to neural networks.
We compare several methods on an English Broadcast News speech
recognition task and show that one can benefit from the fast lookup
speeds of unnormalized models without sacrificing performance.
Our results (Section 5) show that unnormalized modes achieve the
same Word Error Rate (WER) as normalized models leading to
the best reported WER result of 10.2% on this well studied task.
In terms of lookup speed the unnormalized Model M was a factor
of 3 faster then a normalized Model M. For NNLM a factor of
40 speedup in lookup speed was acheived. Note that we focus on
accelerating probability lookups and not model training.

In the next section, we briefly review Model M and our previous
work on unnormalized Model M training, and discuss unnormalized
NNLM'’s in Section 3. In Section 4, we evaluate perplexities and how
closely scores sum to 1 for several methods on Penn Treebank data,
and give Broadcast News speech recognition results in Section 5. We
present related work and conclusions in Section 6.

2. UNNORMALIZED EXPONENTIAL N-GRAM MODEL

In this section we consider exponential n-gram language models, fo-
cusing on Model M an exponential class-based language model. We
first briefly review Model M. For a detailed description see [5]. An
exponential model with parameters A = {\;} and corresponding
features fi(z,y),..., fr(x,y) has the form

F
s(z,y) = Y Nifi(z,y) (@)

where conditional probabilities p(y|z) are computed from scores
s(z,y) via eq. (1). An exponential word n-gram model for n = 3,
say, contains binary features f(x) (-) for (x,y) of the forms

(6, w;), (wj—1,w;), (Wj—2wj—1,w;) (3)

where f(xy)(x,y) = 1 iff the history 2 ends in x and the target
word y is y.

Model M is composed of two separate exponential models, one
for predicting classes and one for predicting words. Let Phg(y|\)
denote an exponential n-gram model and let Pog(y|A1, A2) denote a
model containing all features in Pos(y|A1) and Pye(y|A2). If we as-
sume that every word w is mapped to a single word class, the trigram
version of Model M is defined as

P (wjlwj—2wj—1) = Pag(cj]cj—2¢j—1, wj—2w;j—1) X

Pog(wjlwj—2wj-1¢5) @

ICASSP 2015

where c; is the word class of word w;.
In normalized training, parameters \; are chosen to optimize the
log likelihood of the training data plus ¢; and £2 regularization terms:

D
Onorm = Z log p(ya|za) + (regularization) 3)

d=1

where the training data consists of D events of the form (z4, ya).
Log likelihood is proportional to the Kullback-Leibler divergence
between the model and the training set distribution.

In unnormalized training, the basic idea is to include a term that
penalizes histories 24 when 3 s(z4,y) is far away from 1. Replac-
ing the conventional Kullback-Leibler divergence with the general-
ized Kullback-Leibler (GKL) divergence is an elegant way of doing
this [4]. This translates to adding a penalty of > v e*(®a¥) _ 1 for
each event. Omitting the regularization term for brevity, we have

D D
Ocx = ZS(xd,yd) + Z(Z es(mmy) _ 1) (6)

d=1 d=1 y

Note that if s(zq, ya) is properly normalized, then the second term
is 0 and this equation reduces to eq. (5). To optimize this objective
function, one can use iterative scaling and cluster expansion [6] as
in the normalized case; the expectation computation and parameter
updates are unchanged.

For Model M, only the class model is trained with the unnormal-
ized criterion, as the word model is structured such that normaliza-
tion terms can be precomputed efficiently [7]. For normalized class
models, the sum in eq. (1) is typically over hundreds of classes, so
there is potential for a large speed-up.

One can reduce the normalization penalty term by adding par-
ticular types of features to a model. For example, one can add a
feature for each history z that forces 3, €*(*¥) = 1 in the same
way that explicit normalization does. However, this is equivalent to
having a fully normalized model and is impractical in the general
case. Instead, we have found that adding features for each n-gram
history 6 can improve performance slightly; i.e., features of the form
fo(z,y) = 1iff x ends in the n-gram 6 [1].

3. UNNORMALIZED FEEDFORWARD NNLM’S

A typical NNLM consists of input, projection, hidden and output
layers [8, 9]. Each word in the input vocabulary (containing N
words) is represented by an /N-dimensional sparse vector where the
entry corresponding to the index of that word is 1 and the rest of the
entries are 0. Each history word is then mapped to its continuous
space representation using a shared linear projection. The feature
representations of each history word are concatenated to form the
projection layer. The hidden layer has H hidden units and is fol-
lowed by a hyperbolic tangent nonlinearity. The output layer has N
targets followed by the softmax function. Let ¢;, d;, and o; denote
the values in the projection, hidden, and output layers, respectively,
and and let M denote the weight matrix between the projection and
hidden layers and V' denote the weight matrix between the hidden
and output layers. Then, we have

(n—1)x P
d; = tanh Z Mjc+b; | Vj=1,--- H
=1
H
j=1

where b; and k; are the hidden and output layer biases, respectively.
The o; correspond to the s(x,y) that are the inputs to the softmax
given by eq. (1). For normalized training, the same log likelihood
objective function given in eq. (5) is used except with different reg-
ularization.

Let us analyze the potential speed-up in computing a single
probability when moving to unnormalized NNLM’s. For normal-
ized models, we need to compute every d; and o; in eq. (7). For
unnormalized models, we need only compute a single o;. Thus, the
number of connections that need to be processed is reduced from
(n—1)PH + HN to (n — 1)PH + H, or a factor of %.
Since the size of the output vocabulary NV is generally much larger
than the size of the projection layer (n — 1) P, the potential speed-up
can be quite large. In the next two subsections, we discuss two
penalty based methods for training the unnormalized feedforward
neural net model and noise contrastive estimation.

3.1. Penalty based methods

Just as for Model M, for unnormalized training we wish to penalize
histories x4 when Zy s(zq,y) is far away from 1. Here, we propose
to apply the generalized Kullback-Leibler method from Model M to
NNLM’s, by using the objective function given in eq. (6).

Recently, a method called variance regularization for recurrent
NNLM'’s has also been proposed [10]. In this method, the normal-
ization penalty term in eq. (6) is replaced with a term of the form
Y[log 3=, s(wa, y)]? where 1 is typically between 0.5 and 3. In ad-
dition, rather than using unnormalized scores s(x,y), normalized
probabilities are used to compute the true log likelihood:

D D
OVarReg = Zlng(yd\l’d) +72[10g25($d7y)]2 (8)
d=1 Yy

d=1

Just as adding history features to Model M can improve normal-
ization, parameters can be added to a NNLM for the same purpose.
We propose adding an artificial token y. to the output layer that
is intended to approximate an explicit normalization term. Instead
of outputting unnormalized scores of the form e*(®¥), we output
scores e*(®¥)=3(@v=) - Accordingly, this changes the term s(zq, ya)
ineq. (6) to s(xa,ya) — s(xd, y-).

3.2. Noise Contrastive Estimation

Noise contrastive estimation (NCE) is a recently proposed sampling
based approach to unnormalized training [11]. Rather than optimiz-
ing the likelihood of the training data, a number of noise samples
are generated for each training sample. Then, parameters are trained
to optimize likelihood for the binary prediction task of identifying
true vs. noise samples. With sufficient number of noise samples
the solution to the binary prediction model converges to the maxi-
mum likelihood estimate on the training data. Explicit normaliza-
tion via softmax is not performed; instead, additional parameters are
trained to approximate normalization. Because normalization can be
avoided at training time, NCE training is much faster than conven-
tional NNLM training. In contrast, the methods described earlier in
this section still require the computation of normalization sums at
training time (see eqgs. (6) and (8)), and thus training speed is es-
sentially unchanged. Recently, noise contrastive estimation has been
applied to language modeling [12, 13]. Similar to previous work,
we find NCE training to be around 30 times faster than conventional
NNLM training on CPU machines and a factor of 6 on GPU. Al-
though the training speed improvement is clear for NNLM, NCE is

5417

50

40

30

Percent

20

10

0
-1 -0.5 0 0.5 1

LogZ
Fig. 1. Histogram of log Z values on the Penn Treebank test set for
an unnormalized Model M trained with the GKL criterion.

NCE GKL VarReg
normalized 144 144 144
unnorm, post-normalized 143 145 144
unnorm, “as is” 149 147 146

Table 1. Perplexities on the Penn Treebank test set for normalized
and unnormalized NNLM’s. The last row contains perplexities com-
puted from unnormalized scores and are not true perplexities.

not a good option for Model M training since it is not clear how
sampling will interact with other optimizations used [1][6].

4. ANALYSIS OF UNNORMALIZED BEHAVIOR

In this section, we compare various unnormalized training criteria
and analyze their behavior for both Model M and NNLM’s. A cen-
tral question for unnormalized models is how “closely” normalized
they are; i.e., how close is Z = 3 s(z,y) to 1 on average? Pre-
sumably, if Z is much lower or larger than 1, this will bias classifi-
cation against or toward the corresponding history z in classification
tasks. To analyze these issues, we use a widely studied Wall Street
Journal setup from the Penn Treebank, using exactly the same train-
ing, development, and test data and 10k-word vocabulary as in past
work [2].

First, we examine how closely normalized unnormalized Model
Mis. In Figure 1, we plot a histogram of log Z = log >° s(z, y) for
each event in the test set. For a normalized model, log Z is always
zero and we wish this value to be close to zero as often as possible
for unnormalized models. We see that most of the log Z values are
in fact close to 0, with a median of 0.001, mean of -0.13 and standard
deviation of 0.3.

To compare the discriminative power of normalized and unnor-
malized models, we explicitly normalize the unnormalized model af-
ter training, or post-normalize it, and compute the perplexity of the
resulting model. (Perplexities computed from unnormalized scores
cannot be fairly compared with “true” perplexities.) On the test
data, the perplexity of a normalized Model M is 130 and the post-
normalized unnormalized model yields a perplexity of 131. Given
that the unnormalized model is also closely normalized as shown in
Figure 1, we expect the unnormalized model to perform as well as
the normalized model on classification tasks, and this is supported
by our experiments in Section 5.

Next, we look at the distribution of log Z for unnormalized
NNLM’s trained with the GKL, variance regularization, and NCE
criteria. From Figure 2, there are no obvious differences between the
three training methods. The standard deviation of log Z values was
close to 0.2 for the three training methods with both the mean and
median close to 0. As compared to Model M, there are fewer histo-

35

nce m—
gkl e
30 var

25
20

15

Percent

10

5

0
-1 -0.5 0 0.5 1

LogZ
Fig. 2. Histogram of log Z values on the Penn Treebank test set for
unnormalized NNLM’s trained using various criteria.

PP WER
NNLM, norm 184 12.8
NNLM, unnorm (GKL) 185 12.7
NNLM, unnorm (VarReg) | 184 12.8
NNLM, unnorm (NCE) 185 12.8

Table 2. Word-error rates and post-normalized perplexities on the
Broadcast News test set for various normalized and unnormalized
NNLM’s; 12M words training set.

ries in the center bucket and there are more histories with Z above
1. Overall, most Z’s are still quite close to 1. From Table 1, we see
that post-normalized unnormalized NNLM’s have about the same
perplexities as the normalized model. Based on perplexities and
the distribution of log Z, we do not find any significant differences
between the various methods for training unnormalized NNLM’s.

In summary, we find that all of the unnormalized models we
evaluated are closely normalized, even on unseen data. This shows
one can reasonably approximate explicit normalization without sig-
nificantly increasing model size, and suggests that unnormalized
models may perform about as well as their normalized couterparts
in applications. However, computing log Z on a test set only exam-
ines Z for histories x that occur in valid text. In applications such as
speech recognition, many “invalid” histories are also evaluated, and
thus the above analysis is not conclusive.

5. SPEECH RECOGNITION RESULTS

To see how unnormalized models compare to normalized models
on a classification task, we present speech recognition results on
an English Broadcast News task. We use a discriminatively-trained
speaker adaptive acoustic model trained on 430h of Broadcast News
audio [14]. A total of 350M words from multiple sources is used as
language model training text, and the vocabulary is about 80k words.
The baseline language model is a linear interpolation of word 4-gram
models, one for each text source. Lattices are generated on the rt04
test set (4 hours of data) using a pruned word n-gram model, and the
lattices are then rescored with an unpruned model containing 271M
n-grams, resulting in a baseline WER of 13.0%.

As NNLM training is quite expensive, we first compare vari-
ous unnormalized NNLM’s using a smaller 12M words training set.
In Table 2, we present post-normalized perplexities and word-error
rates for various normalized and unnormalized NNLM’s. We find
that each of the three unnormalized methods give very similar per-
formance, and the resulting word-error rates are almost identical to
that of a normalized NNLM. On a GPU machine it took roughly
13 hours to train language models with GKL,var and ML criteria

5418

AMI1 | AM2

word n-gram 13.0 11.3

Model M, norm 12.3 10.6

Model M, unnorm 12.4 10.8

word n-gram + NNLM, norm 12.2 10.3

word n-gram + NNLM, unnorm (NCE) 12.2 10.3
Model M, norm + NNLM, norm 11.9 10.2
Model M, unnorm + NNLM, unnorm (NCE) 11.9 10.2

Table 3. Word-error rates on the Broadcast News test set for var-
ious normalized, unnormalized, and interpolated language models;
350M words training set. Lookup times with unnormalized models
are significantly faster (Table 4)

while NCE took only around 2 hours. For reference, training both
the normalized and unnormalized Model M took less then an hour
on a single cpu. For the full training set, we evaluate unnormalized
training only with NCE, as training is much faster with this method.

Next we report results on the full 350M words set. These re-
sults are directly comparable to the results for large-scale NNLM’s
and Model M reported in [3], and we follow the best model con-
figurations found in that work. For Model M, models are built on
each individual corpus using 150 words classes and interpolated.
NNLM’s use word embeddings that are P = 120 dimensions and
a hidden layer containing H = 1200 hidden units. NNLM train-
ing using NCE is stopped after 5 epochs since no additional gain
is found afterwards when interpolating with Model M. We use two
acoustic models for our experiments; AM1 is a GMM-HMM sys-
tem used in [3] for NNLM experiments and described in [14].AM2
is a NN-HMM system described in [15, 16]. We use two differ-
ent sets of acoustic models to verify that the gains from Model M+
NNLM and the comparison between normalized and unnormalized
hold even when the acoustic models improve significantly,

Table 3 reports word-error rates for various models using the full
training set. As we can see, the unnormalized models produce just
about the same word-error rates as their normalized counterparts in
every condition.We do not interpolate Model M with the baseline
word n-gram model since this generally does not produce any gains.
These results are consistent with the analysis on Penn Treebank data
from Section 4. By interpolating Model M and a NNLM, a gain of
1.1% absolute over the baseline is achieved for both the normalized
and unnormalized conditions with both AM1 and AM2. With AM2
and our best language models we acheive a WER of 10.2% which is
the best reported on this task to date.

5.1. Lookup Speed

In many speech recognition decoders, multiple word probabilities
(with a common history) may be looked up in a single call. Thus, we
compare lookup speed between normalized and unnormalized mod-
els for batch and single score lookup. For Model M, only the class
model in Model M benefits from unnormalized training as noted in
Section 2. Thus, an upper bound Uy, on the ratio of lookup times
between normalized and unnormalized Model M, with shared com-
putation of the normalization term for the entire batch, can be written

as C+B

5 ©))
where C' is the number of classes and B is the lookup batch size.
For NNLM, the upper bound Un derived based on our analysis in
Section 3, is a function of the embedding size P , the n-gram order,
the vocabulary size N and the batch size B.

(n—1)P+N
(n—1)P+B

Um =

Uy = (10)

Batch Size | Upper Bound | Observerd
Model M 1 150 3.2
NNLM 1 56 35
Model M 256 150 1
NNLM 256 33 24

Table 4. Upper bounds and observed speedup for single and batch
lookup with unnormalized models as compared to normalized mod-
els. The WER’s are similar to normalized models (Table 3)

In Table 4 we report the expected(upper bound) and observed
speedup over normalized model in terms of score lookup time for
single lookups (batch size 1) and a batch size of 256. For comput-
ing the bounds we used the model parameters C' = 150, P = 120
and N = 20K. Note that for Model M we compute normalized
class probabilities using cluster expansion like techniques [6] and
hence the observed speedup is significantly lower then the upper
bound. As can be seen from the table, the unnormalized Model
M acheived speedup of 3.2 for single lookups. The unnormalized
NNLM speeded up lookups by a factor of 35 for single and 24 for
batch compared to normalized NNLM. These speedup’s come for
free i.e with no performance hit (Table 3).

6. CONCLUSION

In this paper, we consider various criteria for training unnormalized
variants of Model M and NNLM’s. We discuss how these disparate
models share the same computational bottleneck when computing
probabilities, and can thus benefit from similar unnormalized train-
ing techniques. We show how the generalized Kullback-Leibler cri-
terion used with Model M can also be applied to NNLM’s, and pro-
pose adding a special token to the output layer of NNLM’s to help
approximate an explicit normalization term.

We survey existing methods for unnormalized training and com-
pare how closely normalized they are as well as their performance
on a speech recognition task. Across algorithms, values for Z are
generally quite close to 1 even for unseen data. We find that exist-
ing unnormalized methods for NNLM’s perform almost identically,
and that unnormalized methods match normalized word-error rates
for both Model M and NNLM’s. By using an unnormalized Model
M and NNLM, we achieve the best reported WER of 10.2% on the
well studied English broadcast task, with lookup times that are sub-
stantially smaller then the normalized models. Thus, unnormalized
modeling is crucial for making advanced language models practical.

Due to greatly reduced training time, NCE appears to be the
method of choice for unnormalized NNLM’s. On the other hand,
it is unclear that NCE is beneficial for Model M, due to the wide
range of optimizations that are generally applied in Model M train-
ing [1]. For Model M, unnormalized modeling does not significantly
affect training time since removing the softmax computation does
not change the overall computation very much.

Other methods have been proposed to accelerate lookups for
NNLM’s. NNLM'’s can be converted to word n-gram models
through sampling [17] or by enumerating n-grams and pruning [18].
However, both of these conversion methods incur a significant hit
in word-error rate. Furthermore, when converting to a word n-gram
model, we lose some of the flexibility that NNLM’s and Model M
provide in terms of what features can be used [19, 20]. The caching
of normalization factors and language model scores can also reduce
computation during decoding [21]. In contrast, the lookup speed
gains from unnormalized modeling are decoder agnostic. Decoder
specific caching techniques can also be applied to unnormalized
models to further reduce language model lookup costs.

5419

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

7. REFERENCES

Stanley F. Chen, Lidia Mangu, Bhuvana Ramabhadran, Ruhi
Sarikaya, and Abhinav Sethy, “Scaling shrinkage-based lan-
guage models,” Tech. Rep. RC 24970, IBM Research Division,
April 2010.

Tomas Mikolov, Anoop Deoras, Stefan Kombrink, Lukas Bur-
get, and Jan Cernocky, “Empirical evaluation and combina-
tion of advanced language modeling techniques.,” in INTER-
SPEECH, 2011, pp. 605-608.

Hong-Kwang Kuo, Ebru Arisoy, Ahmad Emami, and Paul
Vozila, “Large scale hierarchical neural network language
models.,” in INTERSPEECH, 2012.

Guy Lebanon and John Lafferty, “Boosting and maximum like-
lihood for exponential models,” in Advances in Neural Infor-
mation Processing Systems, 2001, pp. 447-454.

Stanley F. Chen, “Shrinking exponential language models,” in
Proceedings of NAACL-HLT, 2009, pp. 468-476.

Abhinav Sethy, Stanley F Chen, and Bhuvana Ramabhadran,
“Distributed training of large scale exponential language mod-
els,” in Acoustics, Speech and Signal Processing (ICASSP),
2011 IEEE International Conference on. 1EEE, 2011, pp.
5520-5523.

Jun Wu and Sanjeev Khudanpur, “Efficient training methods
for maximum entropy language modeling,” in Proceedings of
Interspeech, 2000.

Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and Chris-
tian Jauvin, “A neural probabilistic language model,” Journal
of Machine Learning Research, vol. 3, pp. 1137-1155, 2003.

Holger Schwenk, “Continuous space language models,” Com-
puter Speech and Language, vol. 21, no. 3, pp. 492-518, July
2007.

Yongzhe Shi, Wei-Qiang Zhang, Meng Cai, and Jia Liu, “Vari-
ance regularization of ranlm for speech recognition,” in Acous-
tics, Speech and Signal Processing (ICASSP), 2014 IEEE In-
ternational Conference on. IEEE, 2014, pp. 4893-4897.

Michael U Gutmann and Aapo Hyvirinen, “Noise-contrastive
estimation of unnormalized statistical models, with applica-
tions to natural image statistics,” The Journal of Machine
Learning Research, vol. 13, no. 1, pp. 307-361, 2012.

Andriy Mnih and Yee Whye Teh, “A fast and simple algo-
rithm for training neural probabilistic language models,” in

Proceedings of the 29th International Conference on Machine
Learning, 2012, pp. 1751-1758.

Ashish Vaswani, Yinggong Zhao, Victoria Fossum, and David
Chiang, “Decoding with large-scale neural language models
improves translation.,” in EMNLP. Citeseer, 2013, pp. 1387-
1392.

S. FE. Chen, B. Kingsbury, L. Mangu, D. Povey, G. Saon,
H. Soltau, and G. Zweig, “Advances in speech transcription
at IBM under the DARPA EARS program,” [EEE Transac-
tions on Audio, Speech, and Language Processing, vol. 14, no.
5, pp. 1596 — 1608, 2006.

Tara N Sainath, Abdel-rahman Mohamed, Brian Kingsbury,
and Bhuvana Ramabhadran, “Deep convolutional neural net-
works for LVCSR,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2013 IEEFE International Conference on. IEEE,
2013, pp. 8614-8618.

5420

[16]

[17]

[18]

[19]

[20]

(21]

Tara N Sainath, Brian Kingsbury, Abdel-rahman Mohamed,
George E Dahl, George Saon, Hagen Soltau, Tomas Beran,
Aleksandr Y Aravkin, and Bhuvana Ramabhadran, “Improve-
ments to deep convolutional neural networks for LVCSR,” in
Automatic Speech Recognition and Understanding (ASRU),
2013 IEEE Workshop on. IEEE, 2013, pp. 315-320.

Anoop Deoras, Tomas Mikolov, Stefan Kombrink, Martin
Karafiat, and Sanjeev Khudanpur, “Variational approxima-
tion of long-span language models for LVCSR,” in Acoustics,
Speech and Signal Processing (ICASSP), 2011 IEEE Interna-
tional Conference on. IEEE, 2011, pp. 5532-5535.

Ebru Arisoy, Stanley F Chen, Bhuvana Ramabhadran, and Ab-
hinav Sethy, “Converting neural network language models
into back-off language models for efficient decoding in auto-
matic speech recognition,” IEEE/ACM Transactions on Audio,
Speech and Language Processing (TASLP), vol. 22, no. 1, pp.
184-192, 2014.

Abhinav Sethy, Stanley Chen, Ebru Arisoy, Bhuvana Ram-
abhadran, Kartik Audkhasi, Shrikanth Narayanan, and Paul
Vozila, “Joint training of interpolated exponential n-gram mod-
els,” in Proceedings of ASRU, 2013.

Ahmad Emami and Frederick Jelinek, “A neural syntactic lan-
guage model,” Machine learning, vol. 60, no. 1-3, pp. 195—
227, 2005.

Zhiheng Huang, Geoffrey Zweig, and Benoit Dumoulin,
“Cache based recurrent neural network language model in-
ference for first pass speech recognition,” in ICASSP. 2014,
IEEE International Conference on Acoustics, Speech, and Sig-
nal Processing (ICASSP).

