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ABSTRACT

Recurrent neural network language models (RNNLMs) are be-

coming increasingly popular for speech recognition. Previously,

we have shown that RNNLMs with a full (non-classed) output

layer (F-RNNLMs) can be trained efficiently using a GPU giving

a large reduction in training time over conventional class-based

models (C-RNNLMs) on a standard CPU. However, since test-time

RNNLM evaluation is often performed entirely on a CPU, standard

F-RNNLMs are inefficient since the entire output layer needs to

be calculated for normalisation. In this paper, it is demonstrated

that C-RNNLMs can be efficiently trained on a GPU, using our

spliced sentence bunch technique which allows good CPU test-time

performance (42× speedup over F-RNNLM). Furthermore, the per-

formance of different classing approaches is investigated. We also

examine the use of variance regularisation of the softmax denom-

inator for F-RNNLMs and show that it allows F-RNNLMs to be

efficiently used in test (56× speedup on a CPU). Finally the use of

two GPUs for F-RNNLM training using pipelining is described and

shown to give a reduction in training time over a single GPU by a

factor of 1.6×.

Index Terms— language models, recurrent neural network,

GPU, speech recognition

1. INTRODUCTION

Recurrent neural network language models (RNNLMs) have shown

promising performance improvements in many applications, such as

speech recognition [1, 2, 3, 4, 5], spoken language understanding

[6, 7, 8], and machine translation [9, 10] .

One key practical issue is slow training speed of standard

RNNLMs on standard CPUs. Previously we showed that using

the “spliced sentence bunch” technique, which processes many

sentences in parallel and performs mini-batch parameter updates,

RNNLMs with a full output layer (F-RNNLMs) could be trained

efficiently on a GPU [11], resulting in a 27× speed-up over a CPU

with a class-based factorised output layer. However, F-RNNLMs

are very time-consuming to evaluate (e.g. for lattice-rescoring) on

CPUs, and hence techniques that allow fast GPU-based training and

efficient CPU-based evaluation are of great practical value.

In this paper we extend our previous work on GPU-based

RNNLM training with spliced sentence bunch [11] and present two
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methods to improve CPU-based evaluation efficiency. First a sim-

ple modification is introduced to allow class-based RNNLMs to be

trained on GPUs efficiently. Furthermore, different word cluster-

ing algorithms are investigated and compared. The second method

allows the RNNLM to be used without softmax normalisation dur-

ing testing, by training with an extra variance regularisation term

in the training objective function. This approach was applied on

feedforward NNLMs and class-based RNNLMs in previous work

[12, 10, 13]. It can also be applied to full output layer RNNLMs.

Finally, to further improve training speed, pipelined training using

multiple GPUs is explored.

The rest of this paper is structured as follows. Section 2, reviews

RNNLMs. Efficient training of class-based RNNLMs is described in

Section 3, and variance regularisation in Section 4. Pipelined train-

ing of RNNLMs is described in Section 5. Experimental results on a

conversational telephone speech transcription task are given in Sec-

tion 6 and conclusions presented in Section 7.

2. RECURRENT NEURAL NETWORK LMS

In contrast to feedforward NNLMs, recurrent NNLMs [1] represent

the full, non-truncated history hi−1
1 =< wi−1, . . ., w1 > for word

wi using the 1-of-k encoding of the previous word wi−1 and a con-

tinuous vector vi−2 for the remaining context. For an empty history,

this is initialised, for example, to a vector of all ones. The topology

of the recurrent neural network used to compute LM probabilities

PRNN(wi|wi−1, vi−2) consists of three layers. The full history vec-

tor, obtained by concatenating wi−1 and vi−2, is fed into the input

layer. The hidden layer compresses the information from these two

inputs and computes a new representation vi−1 using a sigmoid ac-

tivation to achieve non-linearity. This is then passed to the output

layer to produce normalised RNNLM probabilities using a softmax

activation, as well as recursively fed back into the input layer to

be used as the history when computing the LM probability for the

following word PRNN(wi+1|wi, vi−1). As RNNLMs use a vector

representation of full histories, they are mostly used for N-best list

rescoring. For more efficient lattice rescoring using RNNLMs, ap-

proximation schemes, for example, based on clustering among com-

plete histories [14] can be used.

2.1. Full output layer based RNNLMs (F-RNNLMs)

A traditional RNNLM architecture with an unclustered, full output

layer (F-RNNLM) is shown in Figure 1. RNNLMs can be trained

using an extended form of the standard back propagation algorithm,

back propagation through time (BPTT) [15], where the error is

propagated through recurrent connections back in time for a specific
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Fig. 1. A full output layer RNNLM with OOS nodes.

number of time steps, for example, 4 or 5 [2]. This allows the re-

current network to record information for several time steps in the

hidden layer. To reduce the computational cost, a shortlist [16, 17]

based output layer vocabulary limited to the most frequent words

can be used. To reduce the bias to in-shortlist words during NNLM

training and improve robustness, an additional node is added at the

output layer to model the probability mass of out-of-shortlist (OOS)

words [18, 19, 14].

2.2. Class Based RNNLMs (C-RNNLMs)

Although F-RNNLMs can be trained and evaluated efficiently using

GPUs [11], it is computationally expensive on CPUs due to the nor-

malisation at the output layer. Class based RNNLMs (C-RNNLMs)

provide an alternative choice to speedup training and evaluation on

CPUs, and adopt a modified RNNLM architecture with a class-based

factorised output layer [2]. An illustration of a C-RNNLM is given

in Figure 2. Each word in the output layer is assigned to a unique

class. The LM probability assigned to a word is factorised into two

individual terms.

PRNN(wi|wi−1, vi−2) = P (wi|ci, vi−1)P (ci|vi−1). (1)

The calculation of the word probability is based on only the words

from the same class, as well as the class prediction probability. Since

the number of classes is normally much smaller than the full output

layer size, computation is reduced. It is worth noting that a special

case of C-RNNLMs using a single class is equivalent to a traditional,

full output layer based F-RNNLM introduced in Section 2.1.

In state-of-the-art ASR systems, NNLMs are often linearly in-

terpolated with n-gram LMs to obtain both a good context coverage

and strong generalisation [16, 17, 18, 1, 5, 19]. The interpolated LM

probability is given by

P (wi|h
i−1
1 ) = λPNG(wi|h

i−1
1 ) + (1− λ)PRNN(wi|h

i−1
1 ) (2)

where λ is the weight assigned to the n-gram LM distribution

PNG(·), and kept fixed at 0.5 for all RNNLM experiments in this pa-

per. In the above interpolation, the probability mass of OOS words

assigned by the RNNLM component is re-distributed with equal

probabilities among all OOS words [18, 19].
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Fig. 2. A class based RNNLM with OOS nodes.

3. CLASS BASED RNNLMS TRAINING WITH SPLICED

SENTENCE BUNCH

Spliced sentence bunch training operates on many sentences in par-

allel and performs a mini-batch update [11]. F-RNNLMs could

be trained efficiently on GPUs due to the large number of com-

putational units. However, a very efficient implementation of C-

RNNLMs training with bunch mode is not easy. The data samples

in the same bunch may belong to different classes. This requires

different sub-matrices to be called and greatly complicates imple-

mentation. However, here the aim is to train a C-RNNLM for effi-

cient CPU-evaluation, rather than to provide a speed-up over GPU-

based F-RNNLM training. During training, for each parallel stream,

only the output of words belonging to the target class are kept be-

fore applying softmax from the forward pass, and the outputs for

other words are set to zero. By applying this simple modification, C-

RNNLMs can be trained on GPUs with bunch mode with a similar

computation cost as F-RNNLMs.

It has been shown that the training accuracy and speed are sensi-

tive to word clustering for RNNLM training. In [2], frequency based

class was adopted to speedup training. However, it degraded per-

plexity on the Penn Tree Bank corpus [2, 20]. Word clustering using

Brown’s classing method [21] was investigated in [20, 22, 23] and

improved perplexity results were reported compared to frequency

based classes. As well as frequency-based and Brown-like word

clustering1, word clustering derived from a vector-based word repre-

sentation has also been explored. Each word can be represented by

a vector in a low-dimensional space [25] obtained from the matrix

associated with the input word and hidden nodes. The similarity of

words could be measured by the distance of vectors in the continu-

ous space. For F-RNNLMs, the weight matrix between the hidden

nodes could also be used to represent words2. A k-means approach

is used to cluster words into a specific number of classes in this work

and the input and output matrices are obtained from a well-trained

F-RNNLM.

1We adopted the Brown-like classing method from [24], which is slightly
different to the original version in [21].

2Most previous work on vector word representations has used an hierar-
chical output layer.
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4. F-RNNLM WITH VARIANCE REGULARISATION

Another type of solution to speedup evaluation of NNLMs has been

proposed both in [12] (variance regularisation) and [10] (self-norm).

The variance of the softmax log normalisation is added into the ob-

jective function for optimisation. If the normalisation term can be

regarded as constant at test time, a large speedup can be achieved

by avoiding the calculation of the time consuming softmax function.

The use of variance regularisation was also explored for RNNLM

training in [13], where C-RNNLMs were used and trained sample

by sample. In this work, we investigate the use of variance regular-

isation for F-RNNLMs and train using GPU-based sentence-splice

bunch mode. The objective function to be minimised is

J
vr = J

ce +
1

T

N∑

i=1

M∑

j=1

γ

2
(logZ

(i)
j − LogZi)

2
(3)

where Jce is the standard cross-entropy (CE) based loss function,

J
ce = −

1

T

N∑

i=1

M∑

j=1

logP (w
(i)
j |h

(i)
j ) (4)

T is the number of training samples and N is the number of

bunches in the training corpus and M is the bunch size. Here

Z
(i)
j is the normalisation term for word wj in the ith bunch,

LogZi = 1
M

∑M

j=1 logZ
(i)
j is the mean of the log normalisa-

tion (Log-Norm) term in the ith bunch. It is worth mentioning

that in C-RNNLM training with variance regularisation in [13], the

mean of Log-Norm is set to zero directly, which works well for

C-RNNLMs. However, it doesn’t work well for F-RNNLM training

where the number of classes equals one. Hence, it is important to

calculate the mean and variance of the Log-Norm term for every

bunch.

At test time, the mean of the log normalisation term on a valida-

tion set, denoted LogZ, is calculated. Since the variance of LogZ

is small, the approximate log probability of predicted words can be

calculated as,

log(P (wj|hj)) = log(P̃ (wj |hj))− LogZ (5)

where P̃ (wj |hj) is the unnormalised probability that can be used at

evaluation time. This significantly reduces the computation at the

output layer as the normalisation is no longer required.

5. PIPELINED TRAINING OF RNNLMS

The parallelisation of neural network training can be classified into

two categories: model parallelism and data parallelism [26]. The

difference lies in whether the model or data is split across multi-

ple machines or cores. Pipelined training is a type of model paral-

lelism. It was proposed to speedup the training of deep neural net-

work for acoustic models in [27]. Here, we extend it to the training

of RNNLMs. Layers of the network are distributed across different

GPUs, and operations on these layers (e.g. forward-pass, BPTT) are

executed on their own GPU. It allows each GPU to proceed inde-

pendently and simultaneously, and communication between layers

happens after a parameter update step.

The data flow of pipelined training is shown in Figure 3. The

input weight matrix (W0) and output weight matrix (W1) are pro-

cessed in two GPUs (denoted GPU 0 and GPU 1). For the first bunch

in each epoch, the input is forwarded to the hidden layer and the out-

put of hidden layer is copied from GPU 0 to GPU 1. For the 2nd

bunch, the input is again forwarded. Simultaneously, GPU 1 for-

wards the previous bunch obtained from the hidden layer to the out-

put layer, followed by error back propagation and parameter update.

The communication (i.e. copy operation) between GPUs happens

afterwards. For the following bunches, GPU 0 updates the model pa-

rameters using the corresponding error signal and input with BPTT,

then forwards the current input bunch. GPU 1 performs successively

a forward pass, error back propagation and update . Although there

is one bunch update delay for the update of W0, pipelined training

can guarantee that the update direction is correct and deterministic

for every update.
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Fig. 3. Data flow in pipelined training using two GPUs

6. EXPERIMENTS

In the main part of this section, RNNLMs were evaluated using the

CU-HTK LVCSR system for conversational telephone speech (CTS)

from the 2004 DARPA EARS evaluation. The acoustic models were

trained on approximately 2000 hours of Fisher conversational speech

released by the LDC. A 59k recognition word list was used in decod-

ing. The system uses a multi-pass recognition framework. A detailed

description of the baseline system can be found in [28]. The 3 hour

dev04 data, which includes 72 Fisher conversations, was used as a

test set. The baseline 4-gram LM was trained using a total of 545

million words from 2 text sources: the LDC Fisher acoustic tran-

scriptions, Fisher, of 20 million words (weight 0.75), and the Uni-

versity Washington conversational web data [29], UWWeb, of 525

million words (weight 0.25). This baseline LM gave a perplexity of

51.8 and a word error rate (WER) of 16.7% on dev04 measured us-

ing lattice rescoring. The Fisher data was used to train RNNLMs. A

32k word input layer vocabulary and a 20k word output layer short-

list were used. All RNNLMs were trained in a sentence indepen-

dent mode. The size of the hidden layer was set to 512, the number

of BPTT steps to 5 and the bunch size used was 128. For the C-

RNNLMs, 200 classes were used. An NVidia GTX Titan GPU was

used for RNNLM training. The CPU experiments used a computer

with dual Intel Xeon E5-2670 2.6GHz processors and a total of 16

physical cores. All RNNLMs were interpolated with the baseline

4-gram LM using a fixed weight of 0.5. The 100-best hypotheses

extracted from the baseline 4-gram LM lattices were then rescored

for performance evaluation. A detailed description of the baseline

RNNLM can be found in [11].

6.1. Experiments on C-RNNLMs training

The performance of the bunch mode trained C-RNNLMs described

in section 3 were evaluated first. The performance of the three types

of word clustering schemes presented in section 3 based on fre-

quency, Brown classing or K-Means based classing were compared

in an initial experiment on the Penn Tree Bank (PTB) corpus. In

common with previous research reported in [2, 30, 20, 22], sections

0-20 were used as the training data (about 930K words), while sec-

tions 21-22 were kept as the validation data (74K) and section 23-24
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as the test data (82K). The size of the vocabulary was 10K words.

RNNLMs modelling cross-sentence dependency were trained using

various word clustering methods with 200 hidden layer nodes, 100

classes and 5 BPTT steps. In practice, the GPU-based bunch mode

training speed of C-RNNLMs was found to be close to that of F-

RNNLMs. Their respective perplexities (PPLs) were then evaluated.

As shown in Table 1, the performance of C-RNNLMs was found

to be sensitive to the underlying word clustering scheme being used

at the output layer. The C-RNNLM trained with Brown classing

gave the lowest perplexity of 127.4 among all C-RNNLMs, though

slightly higher than the F-RNNLM. Frequency based C-RNNLMs

gave the highest PPL of 135.3.

Word clustering type PPL

Frequency 135.3

Brown 127.4

K-means on input matrix 132.2

K-means on output matrix 130.6

none 126.1

Table 1. PPL using different word clustering types on the Penn Tree

Bank Corpus

Table 2 shows a comparable set of PPL and WER results ob-

tained on the CTS task. As is shown in that table, the K-Means

based clustering using the output layer matrix gave the best perfor-

mance, though it is slightly outperformed by the F-RNNLM in terms

of WER. The other three word clustering methods gave comparable

error rates. This indicates that using a larger amount of training data,

the performance of C-RNNLMs become less sensitive to the word

clustering algorithm used.

Word clustering
CTS

PPL WER

Frequency 47.4 15.36

Brown 46.3 15.36

K-means on Input matrix 47.1 15.40

K-means on Output matrix 46.2 15.28

none 46.3 15.22

Table 2. PPL and WER results using different word clustering types

6.2. Experiments on F-RNNLMs with variance regularisation

In this section, the performance of F-RNNLMs trained with vari-

ance regularisation is evaluated. The experimental results are shown

in Table 3. In practice the training of F-RNNLMs with variance reg-

ularisation normally requires one more epoch than CE based training

for good convergence. The error rates marked as “WER” in the table

are the WER scores measured using normalised RNNLM probabili-

ties, while “WER*” in the last column are obtained using a more ef-

ficient, and unnormalised RNNLM probability given in equation (5).

The first row of the table gives results without variance regularisa-

tion by setting γ to 0. As expected, the WER increased from 15.22%

to 16.24% without normalisation. This confirms that the normalisa-

tion term computation for the softmax function is crucial when us-

ing standard CE trained RNNLMs in decoding. When the variance

regularisation term was applied in RNNLM training, the difference

between the “WER” and “WER*” metrics was quite small. As ex-

pected, when the setting of γ is the increased, the variance of the

log normalisation term decreased. When γ was set to 0.4, a WER

of 15.28% resulted which is comparable to the baseline CE trained

RNNLM, but with much reduced computation at evaluation time.

γ log(norm) PPL WER WER*

mean var

0.0 15.4 1.67 46.3 15.22 16.24

0.1 14.2 0.12 46.5 15.21 15.34

0.2 13.9 0.08 46.6 15.33 15.35

0.3 14.0 0.06 46.5 15.40 15.30

0.4 14.2 0.05 46.6 15.29 15.28

0.5 14.4 0.04 46.5 15.40 15.42

Table 3. PPL and WER results with variance regularisation. WER*

denotes WER using unnormalised RNNLM probability from (5).

Table 4 shows the evaluation speed of a CE-trained C-RNNLM,

F-RNNLM and a CE-trained F-RNNLM using variance regularisa-

tion on a CPU. As is shown in the table, the C-RNNLM gives a

speedup of 42× over the CE trained F-RNNLM baseline. With

variance regularisation during F-RNNLM training, a 56× evaluation

speedup is obtained compared to the baseline CE-based F-RNNLM.

RNNLMs Train Crit Speed (w/s)

F-RNNLM
CE

0.14k

C-RNNLM 5.9k

F-RNNLM +VR 7.9k

Table 4. Evaluation speed of RNNLMs on CPUs

6.3. Experiments on dual GPU pipelined training of F-RNNLMs

In this section, the performance of a dual GPU based pipelined F-

RNNLM training algorithm is evaluated. In the previous experi-

ments, a single NVidia GeForce GTX TITAN GPU (designed for

a workstation) was used. For multi-GPU work, two slightly slower

NVidia Tesla K20m GPUs housed in the same server were used. Ta-

ble 5 gives the training speed, PPL and WER results of the pipelined

training algorithm. From these results, pipelined training gave a

speedup of 1.6× without affecting RNNLM performance.

Model GPU Train Speed PPL WER

Type (w/s)

C-RNN - 0.37k 46.5 15.31

F-RNN

1xTITAN 9.9k
46.3 15.22

1xK20m 6.9k

2xK20m 11.0k 46.3 15.23

Table 5. Training Speed, PPL and WER results for pipelined train-

ing of F-RNNLMs

7. CONCLUSION

Following our previous research on efficient parallelised training of

full output layer RNNLMs [11], several approaches have been in-

vestigated in this paper to further improve their efficiency at both

training and evaluation time: class based RNNLMs were efficiently

trained on GPU in a modified spliced sentence bunch mode and gave

a 42× reduction in evaluation time; the variance normalised form

of RNNLM training scheme produced a 56× speedup at test time;

and a pipelined RNNLM training algorithm using two GPUs gave an

additional 1.6× acceleration in training speed.
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