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ABSTRACT

Tone error is commonly observed in tonal language acquisition. Cor-
rect tone production is especially challenging for native speakers of
non-tonal languages. In this paper, we exploit the fundamental fre-
quency variation (FFV) feature for Mandarin tone error detection.
We propose to use FFV through two approaches: (1) Concatenating
FFVs along side with standard speech recognition features; (2) To-
ken FFV: Characterizing pitch variation with longer temporal con-
text through GMM tokenization and n-gram language modeling.
Our results show that tone error detection improves by incorporat-
ing FFV features and the two approaches are complementary to each
other.

Index Terms— computer assistant language learning (CALL),
computer-assisted pronunciation training (CAPT), tone recognition

1. INTRODUCTION

A computer-assisted language learning (CALL) system provides an
easy interface for language learners. Computer assistant language
learning systems usually provide segmental and suprasegmental
level feedbacks on non-native speech input. The suprasegmental
level feedback focuses on the rhythm, stress, and intonation of the
speech [1, 2], while the segmental feedback focuses on the pronun-
ciation accuracy of the individual phonetic units [3, 4].

Mispronunciation occurs in both phonetic and prosodic aspects.
Tone error is a special case of mispronunciation for tonal languages.
How to produce tones correctly is one of the major challenges for
non-native language (L2) learners, especially for learners whose na-
tive language (L1) is not tonal. Feedback about tonal error is an
essential feature in a tonal language learning system, thus this work
focuses specifically on the task of Mandarin tone error detection of
non-native speech.

Auditory analysis and acoustic analysis have been performed to
study the characteristics of Mandarin Chinese tone acquisition and
production[5]. A cross-linguistic study on single-word utterances [6]
reveals that Mandarin speakers have higher means and larger ranges
of F0 than English speakers. Study on the difference of pitch range
among native and non-native Chinese speakers [7, 8] suggests a non-
native speaker needs to widen his pitch range to produce Mandarin
tones correctly.

Fundamental frequency (F0) is one of the most important acous-
tic cues for tone modeling. A statistics based pitch contour model
is proposed [9] for Mandarin TTS. Tone relevant features based on
pitch flux [10] is proposed for Chinese dialect identification. F0, du-
ration and energy features are used to capture tone characteristics in
automatic speech recognition (ASR) [11] and Mandarin tone recog-
nition [12]. A F0 smoothing method is proposed in [13] to improve
the performance in Mandarin tone recognition.

Many studies exploit modeling methods to derive better models
to present tone information. Dynamic Bayesian network is used to
model MFCC and pitch features [14] for tone recognition. An SVM
classifier is used in [15] for tone recognition in continuous Mandarin
speech. In [16], context-dependent tone models are built by consid-
ering lexical information.

Apart from F0, other features are exploited in Mandarin tone
recognition. In [17], acoustic features derived from voice quality
analysis are used for Mandarin tone recognition. A deep neural net-
work (DNN) classifier is reported to achieve good tone classification
performance without including pitch information [18]. Discrete Co-
sine Transform Coefficients and Discrete Cosine Series Coefficients
are studied [19] on accented Mandarin speech.

In this work, we propose to use fundamental frequency variation
(FFV) feature [20] for tone error detection on non-native speech.
The idea of FFV is to derive a vector to characterize the within-frame
variation of fundamental frequency. It has been shown to be useful
in speaker change prediction [21], automatic speech recognition for
both tonal and non-tonal languages [22], and low-resource keyword
search [23].

In this paper, we first concatenate FFV along side with standard
speech recognition features. We also propose an alternative method,
Token FFV, motivated by our experience in language and speaker
recognition [24, 25, 26, 27] that modeling longer temporal context
complements using spectral features. With Token FFV approach,
FFV features are tokenized by Gaussian component index based n-
grams to model longer time spans of information beyond the frame
level.

2. LEXICAL TONES IN MANDARIN CHINESE

Mandarin Chinese is a monosyllabic language, where each character
is a single syllable. Each syllable consists of an optional initial, a
final and a tone.

zhong      wen        hen         bang
initial final initial final initial final initial final

1
st

 (high) 2
nd

 (rising) 3
nd

 (dipping) 4
th

 falling
high

low

Pitch

Tone label

Fig. 1: Mandarin syllable structure

Hanyu Pinyin is the most widely adopted Mandarin phonetic
system. Figure 1 shows the pinyin presentation of Mandarin sylla-
ble structure. Mandarin Chinese has 4 lexical tones and one neutral
tone. The differences of the tones are characterized by their pitch
contours: Tone 1 is a high level tone; Tone 2 is rising from mid pitch
to high pitch; Tone 3 stats low, it falls slightly then rises; Tone 4
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Fig. 2: Deriving the FFV spectrum

starts from high pitch and then falls to low. Neutral tone 5 has no
specific contour; it is equivalent to an unstressed syllable. In this
work, tone error detection is focused on the detection of tone 1-4.

3. FUNDAMENTAL FREQUENCY VARIATION
3.1. Rationale

Fundamental frequency (F0), as the acoustic correlate of pitch, is one
of the most important acoustic cues for tone modeling. F0 and its
derivative features are commonly used in Mandarin tone recognition
[9, 11, 12]. Unlike F0, a highly post-processed scalar value from
frame to frame, fundamental frequency variation (FFV) represents
pitch variation per frame in vector-form.

The derivation of FFV feature is based on the following obser-
vation: the rate of F0 change of two adjacent speech frames can be
inferred by finding the dilation factor required to optimally align the
harmonic spacing in their magnitude frequency spectra [28]. Thus
FFV extraction relies on the comparison of the frequency magnitude
spectra of the left and right halves of each analysis frame.

The FFV feature has three advantages: (1) it is estimated lo-
cally from each frame – it does not require peak identification and
landmark detection, as required for many pitch tracking algorithms;
(2) the vector representation is more flexible for advanced modeling;
(3) while F0 is undefined for unvoiced regions, FFV does not suffer
from this limitation.

3.2. FFV Feature Extraction Procedure

Given a speech signal after pre-emphasis, the signal is partitioned
into 32 ms overlapping frames. The computation of FFV then takes
two steps: (1) Deriving the FFV Spectrum; (2) Characterize different
speeds of pitch change through filter banks.

3.2.1. Deriving the FFV Spectrum

Figure 2 shows how the FFV spectrum is derived. For each frame,
two symmetrically shaped windows with their centers of gravity on
the left and right sides of the original speech frame, are overlaid on
the signal and used to extract the magnitude spectra of two corre-
sponding left subframe FL and right subframe FR. FL and FR are
512 point Fourier transforms, computed every 8 ms.

Frequency warping is then applied to the left subframe FL, with
the scaling factor ρ taking on different values to characterize the
corresponding rate of change in pitch as the signal progresses from
the left to the right subframe. A normalized dot product g(ρ) is
derived from the warped left subframe and unwarped right subframe.

The dot product value g(ρ) represents how well the particular
rate of pitch change corresponds to the current frame. When the fre-
quency warping precisely accounts for the amount of pitch variation
from the left to the right frame, the dot product value g(ρ) takes a
value close to 1. Thus, the FFV spectrum vector is computed by
varying ρ:

[ g(ρ1) g(ρ2) g(ρ3) ... g(ρt) ] (1)

3.2.2. Characterizing different speeds of pitch change

In the second step, the FFV spectrum derived from the first step is
compacted using a 7-point filter bank, each filter capturing the vary-
ing speed ranges for pitch variation, as shown in Table 1. The shape
of the filters depend on the speed of pitch variation it is attempting to
characterize. For example, the filters corresponding to very fast pitch
changes use rectangular filters to retain the informative behavior of
unvoiced frames, which tend to have flat rather than decaying tails
in the pitch variation spectrum. After applying the 7 filter banks, the
dimension of the FFV spectrum reduces from 512 to 7.

Filter bank Description

1 trapezoidal filter capture perceptually flat pitch
2 trapezoidal filters slowly changing pitch : rising and falling
2 trapezoidal filters rapidly changing pitch
2 rectangular filters unvoiced frames which have flat tails

Table 1: Function of 7 Filter banks used to derive FFV vector

4. MANDARIN TONE ERROR DETECTION

In Mandarin speech recognition, tonal phones are commonly used to
model phone and its tone variations. The tone information is mod-
eled together with the lexical information during the acoustic model
training process. In this work, we attempt to improve tone error
detection by two methods: (1) concatenating FFV to the acoustic
features in ASR; (2) modeling tones by tokenizing FFV features.

4.1. Error detection using ASR Confidence Measure

The Goodness of Pronunciation (GOP) [29] is a phone level confi-
dence measure to gauge how a particular phone is pronounced dif-
ferently compared to a native model. Given phone p, the GOP score
can be derived by:

GOP (p) =
1

n

P (O|p)P (p)

maxq∈Q P (O|q)P (q)
(2)

where O is the acoustic observation, which is typically MFCC fea-
tures but one can also concatenate pitch related features along with
MFCC’s, Q is the set of all phones, n is the number of frames;
P (O|p) stands for the likelihood of the observation on model p, it
can be obtained by performing forced alignment with the canonical
transcription; maxq∈Q P (O|q) is the maximum likelihood of all the
phones in phone inventory, often derived from a phone loop recog-
nition process.

Phone level GOP scores are first normalized by global GOP
mean and variance. Syllable level scores are obtained by interpo-
lating the phone level GOP scores, as defined in Equation (3), Pin is
the normalized GOP score of the initial phones and Pfi is the nor-
malized GOP score of the final phones. The interpolation parameter
α is determined empirically from the development set.

S = α ∗ Pin + (1− α) ∗ Pfi (3)

4.2. Token FFV: Exploiting Sub-Syllabic Pitch Variation

4.2.1. Motivation

We propose a Token FFV method using GMM tokenization and
n-gram language modeling technique. The proposed Token FFV
approach is inspired by our experience in automatic language and
speaker recognition where tokenization and language modeling have
shown to be successful in capturing acoustic characteristics across a
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relatively longer temporal context. Since Mandarin tones are char-
acterized by pitch contours of the final portion of the syllable (a final
consists of either a vowel, or vowel plus a nasal consonant), a longer
temporal span beyond the frame level is desirable in modeling Man-
darin tones. We aim to characterize pitch variations of time units at
the sub-syllabic level instead of the syllabic level or beyond since
lexical tone distribution in Mandarin is relatively uniform. (Recall
that each Mandarin syllable is attached to one lexical tone.)

Universal 
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FFV feature
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sequences
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Fig. 3: Token FFV for tone error detection

4.2.2. GMM Tokenization followed by n-gram Language Modeling

Figure 3 shows the steps of proposed Token FFV approach. Given
a speech signal, the phonetic boundary for each syllable can be ob-
tained by performing forced alignment using an ASR system. With
the phonetic boundaries, the corresponding FFV features for each
syllable are extracted and the syllables are labeled as tone 1-4 ac-
cording to the phonetic transcription. The set of FFV features are
separated into train and development set.

A GMM universal background model (UBM) is built using all
the FFV feature vectors of the train set. Two gender dependent mod-
els are derived by adapting the UBM using FFV feature vectors of
corresponding genders. The GMM tokenization process [24, 25] is
as follows. For each frame i in the training set, label j is assigned:
j = argmax

j
P (i|cj), where cj is the Gaussian mixture component,

j = 1, ...,M . In this way, each syllable is converted into a GMM
index sequence. This GMM index sequence presents the pitch vari-
ation of the given syllable.

The GMM index sequences for each of the 4 tone classes are
combined and used to derive a tone model using n-gram language
modeling approach. The n-gram language modeling process cap-
tures the pitch variation information among n consecutive frames.
Compared with the frame based F0, the proposed Token FFV method
captures the pitch variation in relatively longer time spans.

5. EXPERIMENT
5.1. Corpus
Two native Mandarin speech corpus are used in the experiments. The
King-ASR-118 corpus [30] is used for acoustic model training. To
further model microphone channel effects and reading-style speech,
an internal corpus is used. This corpus is recorded from Mandarin
speakers in Beijing and Shanghai in China. Each speaker read 350
utterances; on average each test utterance is 8 syllables. The corpus
is split into train and test portions. The training set has about 450
speakers and the test set consists of 1406 utterances from 4 speakers.

The non-native speech corpus used in this study is iCALL cor-
pus [2, 31]. In this corpus, 300 beginning learners of Mandarin Chi-
nese were asked to read 300 Pinyin prompts. Each speaker received

a different set of utterances. The speechwas recorded in quiet office
rooms. The short utterances of the non-native corpus is split into de-
velopment and test portions. The development set consists of short
utterances from 233 speakers, they are used for parameter tuning.
The non-native test set consists of 1887 utterances from 59 speakers,
where each utterance has 2 syllables.

Table 2 summaries the native and non-native corpora used in
this study, each corpus is separated as Train and Test set. There is no
speaker overlap between the Train and Test sets.

Type Train Test
Native King-ASR-118 (1175)

Beijing/Shanghai (456)
native (4)

Non-native iCALL dev (233) non-native (59)

Table 2: Train and Test sets. The number of speakers are in brackets.

5.2. Automatic Speech Recognition

Two ASR systems were trained using two types of acoustic features,
they are denoted as DNN-MFCC and DNN-MFCC-FFV. The feature
vector of the DNN-MFCC system consists of 13 dimensional MFCC
feature in conjunction with 1 dimension of F0, and their derived
deltas, acceleration and third-order deltas. The feature dimension
of the DNN-MFCC is 56. The DNN-MFCC-FFV system is trained
from the same 56 dimensional feature concatenating 7 dimensional
FFV features. The feature vector dimension is 63.

Both ASR system follow the same training mechanism using
Kaldi toolkit: a baseline acoustic model is trained with Maximum
Mutual Information (MMI) criterion, then DNN training is per-
formed using the phone level alignment obtained from the MMI
model. There are 5 hidden layers in the DNN models. In both
systems, there are 175 phones and 8537 tied states.

ASR setup Native Non-native
DNN-MFCC 48.68 63.30
DNN-MFCC-FFV 47.66 62.31

Table 3: Syllable error rate of native and non-native test sets

Table 3 shows the speech recognition results of the two ASR
systems on native and non-native test sets. For all the experiments,
the tonal syllable loop grammar is used. The ASR performance of
both native and non-native test sets are slightly improved by incor-
porating FFV features. Although the DNN-MFCC system includes
1 dimensional F0 in acoustic feature vector, incorporating FFV still
gives a small improvement in the speech recognition accuracy.

5.3. Tone error detection

5.3.1. Performance measure

Two types of errors are examined for tone error detection perfor-
mance: false rejection rate (FRR) and false acceptance rate (FAR),
where FAR= nfa/ntn and FRR= nfr/ntp. nfr is the number
of correct tones that are mis-classified, ntp is the total number of
correctly pronounced tones, nfa is the number of wrong tones that
are mis-classified as correct, and ntn is the total number of wrongly
pronounced tones. FAR and FRR have a trade-off relationship.

5.3.2. Tone error detection with ASR confidence measure

The two ASR systems used for deriving GOP score to detect tone
errors are implemented as in 4.1. The raw GOP score is normalized
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by the mean and standard variance of each speaker. For each final, a
decision threshold is tuned from the non-native development data.

DNN-MFCC DNN-MFCC-FFV
FAR FRR FAR FRR

Tone 1 0.28 0.27 0.26 0.27
Tone 2 0.29 0.30 0.28 0.27
Tone 3 0.29 0.30 0.30 0.30
Tone 4 0.20 0.21 0.20 0.19

All 0.27 0.27 0.26 0.26

Table 4: Tone error detection results using ASR output

Table 4 shows the tone error detection results. Though FFV
gives only limited improvement on the speech recognition perfor-
mance, the overall tone error detection accuracy is consistently im-
proved by using the DNN-MFCC-FFV system. This suggests that
FFV provides additional tonal information compared to F0.

5.3.3. Token FFV

We evaluate the proposed Token FFV approach (section 4.2) for tone
error detection. The non-native development set is further separated
into two portions with a ratio of 6:4. The first portion is used to
train two gender dependent universal GMMs, each consisting of 256
mixture components.

The FFV features from the second portion are evaluated on
the corresponding universal GMM and tokenized GMM index se-
quences. The GMM index sequences derived from the same tone
class are used to train n-gram language model using SRILM toolkit.
In our experiment, n = 5 for each tone class. In the detection
process, each test syllable is tokenized using the gender matched
universal GMM to derive GMM index sequence; the GMM index
sequence is evaluated on each of the 4 tone models, the tone model
that gives the best perplexity is assigned as the tone class label.

Token FFV models pitch variation at a time span of 50 ms (since
n = 5 for the n-gram language modeling step and each frame is
10 ms), which roughly corresponds to the duration of short vow-
els, making it a sub-syllable time unit. This longer time span could
provide complementary pitch variation information to frame-level
characterizations of pitch and FFV.

Tone 1 Tone 2 Tone 3 Tone 4 All
FAR 0.33 0.46 0.52 0.38 0.47
FRR 0.24 0.28 0.31 0.22 0.26

Table 5: Tone error detection results with Token FFV

Table 5 shows the tone error detection results of individual tone
class and overall performance using Token FFV method. One obser-
vation is the high FAR rate, which might be due to the fact that only
native data (correctly produced tones) are considered in the n-gram
language modeling and decision, hence the mispronounced tone pat-
terns are not well captured. Detection error is higher for Tone 3,
which is not surprising because the pitch contour of Tone 3 is the
most complex among the four tones.

5.3.4. Fused system: DNN-MFCC-FFV+Token FFV

The two proposed tone error detection systems are fused. For each
syllable, the perplexity score derived from Token FFV system is first
normalized to [0-1], then it is interpolated with the GOP score de-
rived from the ASR system (as shown in Eq.3). Figure 4 compares
the overall tone error detection performance of the DNN-MFCC-
FFV system and the fused system: DNN-MFCC-FFV+Token FFV.

The detection error trade-off (DET) curves are plotted, where x and
y axis indicate FRR and FAR respectively.
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Fig. 4: Tone error detection results with and without Token FFV
Figure 4 shows that tone error detection is further improved by

the fusion of the two methods, especially in the low FAR and FRR
area. This confirms our assumption that the pitch variation is not
fully exploited by concatenating FFV feature in acoustic feature, the
explicit tone modeling with Token FFV provides additional tone dis-
criminating information to the GOP based method.
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Fig. 5: Individual tone error with and without Token FFV

Figure 5 shows the DET curves for each tone class. We can
see that Token FFV improves detection for Tone 1 and 4, but not
necessarily for Tone 2 and 3. One plausible explanation is due to
the pitch contour characteristics of the four tones. Tone 2 and Tone
3 generally have greater variation in their pitch contours, whereas
Tone 1 manifests largely in the unchanged tone category and Tone
4 manifests in the rapidly falling category. In terms of the pitch
variation spectrum, it is possible that Tone 1 and Tone 4 fall more
cleanly into the categories of pitch variation characterized by the the
7-point filterbank in FFV, and thus their corresponding FFV features
are better captured by the Token FFV model.

6. CONCLUSIONS AND FUTURE WORK

In this work, we investigate how to exploit FFV for tone error de-
tection on non-native Mandarin. Our experiment results show that
FFV provides additional tonal information when concatenated to
GOP scores. In addition, we propose a Token FFV modeling ap-
proach, capturing sub-syllabic time spans of pitch variation. The ex-
periment results shows that Token FFV provides complements GOP
based tone error detection.

For future work, we plan to refine the Token FFV approach to
incorporate discriminative training and further investigate how to im-
prove detection rates for Tone 2 and Tone 3.
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