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ABSTRACT

Neural network joint modeling (NNJM) has produced huge improve-
ment in machine translation performance. As in standard neural net-
work language modeling, a context-independent linear projection is
applied to project a sparse input vector into a continuous represen-
tation at each word position. Because neighboring words are depen-
dent on each other, context-independent projection may not be op-
timal. We propose a context-dependent linear projection approach
which considers neighboring words. Experimental results showed
that the proposed approach further improves NNJM by 0.5 BLEU
for English-Iraqi Arabic translation in N-best rescoring. Compared
to a baseline using hierarchical phrases and sparse features, NNJM
with our proposed approach has achieved a 2 BLEU improvement.

Index Terms— Neural network joint modeling, context-dependent
linear projection, position-dependent linear projection, statistical
machine translation

1. INTRODUCTION

Recently, neural network research has inspired a lot of interest in
various areas such as automatic speech recognition and statistical
machine translation. In both tasks, language modeling plays a cru-
cial role in performance improvement. Feed-forward neural network
language modeling (NNLM) [1, 2] and translation modeling [3, 4, 5]
are some recent efforts producing performance improvement. In sta-
tistical machine translation (SMT), the neural network joint model
(NNJM) [6] has seen dramatic improvement in machine translation,
yielding 2–3 BLEU improvement over a strong SMT baseline. The
success of NNJM is due to its ability to leverage a wide word con-
text (e.g., 11-word window) from a source sentence, compared to
NNLM or a recurrent neural network language model (RNNLM) [7]
that only uses target word context.

Similar to NNLM [8], NNJM employs shared linear projections
to map a sparse word input into a continuous representation at each
contextual word position: one for the source word context and the
other for the target word context. The linear projection matrices are
estimated during backpropagation. Usually, the projected continu-
ous representation is viewed as some underlying semantic/syntactic
information of an input word. The rationale is similar to the con-
ventional class-based language modeling [9], where each word is
first mapped to a discrete class label. In both cases, the word-to-
class mapping is context-independent and insensitive to surrounding
word context. For instance, word, e.g. “bank”, can have multiple
meanings, namely a financial bank or a river bank, depending on the
context. However, the context-independent linear projection will al-
ways map “bank” to the same point in the continuous space that may
be suboptimal.

In this paper, we propose a context-dependent linear projection
that takes into account surrounding word context for NNJM. Moti-
vated by [10, 11], where a filter spanning a window of words is ap-
plied at each word position within a convolutional neural network,
we employ the same idea to allow context-dependent linear projec-
tions on a window of source words and target words. With this ap-
proach, the word “bank” will be mapped onto different continuous
representations, depending on the surrounding context, for more ac-
curate modeling.

In addition, we investigate a position-dependent linear projec-
tion to study whether word positions would be useful for better mod-
eling. First, each input word position has a dedicated linear projec-
tion matrix. This leads to significantly more model parameters to
estimate and thus the model parameters may not be well estimated
due to data sparsity. Therefore, all position-dependent projection
matrices have a shared component and a position-dependent compo-
nent. The shared component serves as a context-independent linear
projection, while the position-dependent component makes further
adjustment. We expect that the shared component has a regulariza-
tion effect towards the position-dependent components.

The paper is organized as follows: In Section 2, we review
NNJM, followed by the proposed approach in Section 3–4. We de-
scribe experiments and results in Section 5. We discuss conclusions
in Section 6.

2. REVIEW OF NEURAL NETWORK JOINT MODELING

The advantage of NNJM is its ability to exploit a source sentence
for predicting a target word. Similar to NNLM, NNJM employs
a multi-layer architecture as shown in Figure 1. In the first layer,
each word position in a context is encoded as a 1-to-V sparse vector
where V denotes the size of the vocabulary. Each sparse vector is
then projected into a continuous space using shared projection ma-
trices W0 and U−1 for the source language and the target language
respectively.

Given a source sentence F = f1...fi...fI , a target sentence
E = e1...ej ...eJ , and the corresponding word alignment sequence
A=a1...aj ...aJ where aj denotes a set of source word positions
aligned to ej , NNJM has the following mathematical form:

P (ej |ej−1...e1, F,A) ≈ P (ej |ej−1...ej−n+1, F[āj−t,āj+t])

where ej is the predicted target word at position j. āj denotes the
averaged source position that is aligned with ej . Since a target word
may align to multiple source words, the averaged source position is
computed for simplicity. Following the convention in [6], if ej does
not align to any source word, an alignment variable of the next word
ej+1 is inherited. The averaged source word position helps to locate
a block of source words centered at āj for target word prediction.
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Fig. 1. Architecture of NNJM.

With n = 4 and t = 5, the above NNJM takes a 14-gram context:
3-gram target word context and 11-gram source word context. To
train NNJM, the standard backpropagation algorithm can be applied
to estimate the network weights, including the projection matrices,
using maximum likelihood. We perform a simple count-cutoff strat-
egy to limit the size of the source and target vocabulary by mapping
singleton words to an unknown token.

3. NNJM WITH CONTEXT-DEPENDENT PROJECTION

One assumption in NNLM/NNJM modeling is the use of a context-
independent linear projection matrix:

xi = W0 · fi (1)
yj−1 = U−1 · ej−1 (2)

where fi and ej−1 denote sparse vectors on the source and target
language. xi and yj−1 are the corresponding dense vectors. This im-
plies that, for instance, the word “bank” as in “river bank” or “finan-
cial bank” is projected into the same continuous representation. For
more accurate modeling, word context should be taken into consid-
eration during linear projection as shown in Figure 2. For instance,
to project a source word fi, a source context window [fi−1, fi, fi+1]
is applied:

xi = W−1 · fi−1 +W0 · fi +W+1 · fi+1 (3)

To project a target history word ej−1, an N-gram target history win-
dow [ej−3, ej−2, ej−1] can be employed:

yj−1 = U−3 · ej−3 + U−2 · ej−2 + U−1 · ej−1 (4)

With a window of size 3, the number of parameters in the projection
matrices is 3 times larger than the conventional NNJM. With n = 4
and t = 5, 5-gram target word context and 13-gram source word
context are utilized for linear projection. However, the number of
dense vectors after linear projection is still identical to conventional
NNJM.
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Fig. 2. Architecture of NNJM with context dependent linear projec-
tions: U = {U−3, U−2, U−1} and W = {W−1,W0,W+1}.

4. NNJM WITH POSITION-DEPENDENT PROJECTION

Another way to precisely model input projection is to have separate
linear projection matrix per input word position. However, this will
increase the number of model parameters proportional to the number
of input context and thus insufficient training data may be an issue.
To alleviate this, we enforce the position-dependent linear projection
matrices to have a shared matrix component:

U ′
j = Uj + U (5)

W ′
i = Wi +W (6)

where i and j denote the input word positions, and U and W are the
shared matrices across word positions on the target and source side
respectively. We anticipate that the shared matrices are essential to
enforce some structure during learning. For analysis, we assume
that all matrices are initialized with zeros and the learning rate is 1.
After processing the first mini batch, the updated shared matrix U is
calculated as the summation of gradients over all input positions in
gradient ascent:

U (new) =
∑
j

∆Uj (7)

Due to linearity, we can see that the updated U ′
j is:

U
′(new)
j = ∆Uj +

∑
j

∆Uj (8)

= 2 ·∆Uj +
∑
j′ 6=j

∆Uj′ (9)

Eqn 9 means that the projection matrix at the j-th position is calcu-
lated similarly as the shared matrix in Eqn 7 but the corresponding
position gradient is boosted by 2. The result is intuitive. Each input
word is first projected into a space using the context-independent lin-
ear projection, then followed by a position-dependent adjustment.

5. EXPERIMENTAL SETUP

Our translation engine was built on data from the DARPA TRANSTAC
program, a speech-to-speech translation initiative targeting tactical
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military communication [12]. The source language was conversa-
tional English, and the target language was Iraqi Arabic. This MT
direction is more challenging because valid morphology and word
order in the MT output must be maintained, and data scarcity for LM
training is a greater problem in Iraqi Arabic. We had 760K parallel
sentence pairs as training data and 6985 sentence pairs for tuning
the log-linear weights for dense and sparse features. The tuning set
had a single reference, and all test sets had 4 references. We filtered
the tuning set by skipping short dialogues that contained less than
three sentences/turns; many of them were simple sentences such as
“thank you” or “you are welcome.” Details are shown in Table 1.

Table 1. Sizes of translation data sets used.
Data Sentences Source words
Train 760200 7207779
Tune 6985 64193
Test1 567 6855
Test2 655 10652
Test3 617 9203

We applied a word segmenter on the Iraqi Arabic text to segment
affixes on words. All models were built using the segmented data,
and translations were post-processed into word forms for BLEU
score computation. In our Hiero SMT baseline, we incorporated
12 dense features for each bilingual stochastic context-free gram-
mar (SCFG) rule after the Hiero grammar in [13], including IBM
Model-1 scores in both source-to-target and target-to-source direc-
tions, relative frequencies in both directions, count of phrases, count
of Hiero rules, number of source content words aligned to target
spontaneous words, number of target spontaneous words aligned to
source content words, three binned frequencies, and the number of
unaligned source words. We further computed lexical pairs seen in
a dictionary, affix sequences/ngrams, fertility for each word in the
SCFG rule, and additional spontaneous/content word mismatches as
sparse features. In total, we had 368, 524 sparse features. Optimiza-
tion methods such as MIRA [14] or PRO [15], which can optimize
millions of sparse features, were employed.

The training data were aligned using the grow-diag-final option
with GIZA word alignment in both directions. Then the aligned sen-
tence pairs were fed into NNJM training while the target side was
fed into NNLM and RNNLM training. The vocabulary sizes of Iraqi
Arabic and English were 30k and 20k respectively after mapping sin-
gleton words into an unknown token. 10% of the training data was
kept for cross-validation on word perplexity to ensure that training
was on the right track, although word perplexity had little correla-
tion with translation performance using BLEU [16]. We compared
the following neural network modeling approaches:

• NNLM

• RNNLM

• Bilingual RNN [17]

• NNJM with 11-word source window and 3-word target win-
dow [6]

• NNJM with context-dependent (CD) projection (this paper)

• NNJM with position-dependent (PD) projection (this paper)

All neural network models employed 600 hidden nodes trained on
the same data and vocabulary.

For baseline RNNLM and bilingual RNN training, we employed
100 output classes and used backpropagation through time using

the flag “-bptt 4 -bptt-block 10”. These are the default settings in
the RNNLM toolkit [7]. The same training and cross-validation
sets were used, but with a sequential sentence order to allow RNN
to capture dialogue-level discourse via the recurrent hidden vector.
RNNLM training took 5 days to finish on a single CPU. The initial
learning rate was chosen as 0.1; the learning rate started to halve
when the reduction in cross-validation perplexity was small enough.
For bilingual RNN [17], a bag-of-words (BOW) representation of
a source sentence was used as additional input for RNN training,
similar to [18]. Meanwhile, we performed NNJM training using a
GPU with a minibatch size of 128 samples and an initial learning
rate of 0.06. We randomized training samples before training. As
with RNNLM training, the learning rate started to halve when the
reduction in cross-validation perplexity was small enough. NNJM
training took 2 days to finish using Theano [19]. Motivated by [6],
the output sizes of the projection matrices were set to 192. In addi-
tion, NNJM had 2 hidden layers with 600 hidden nodes in each layer.
Empirically, this only contributed 0.1 BLEU improvement compared
to a single hidden layer architecture.

For N-best list reranking, we applied our baseline translation en-
gine to generate up to 2000 N-best hypotheses per source sentence.
The combined weighted score was associated with each hypothesis
so that the score was further combined with a score from NNJM for
reranking:

score(rerank) = score(base) + λnn · fnn(F,E)

where fnn(F,E) denotes different kinds of neural network model-
ing scores for a sentence pair F and E. λnn was optimized using a
simple grid search.

5.1. Reranking results

Table 2 shows N-best reranking performance on BLEU using var-
ious neural network models. A 4-gram NNLM yielded 0.3 BLEU
improvement compared to the SMT baseline with sparse features.
Context-dependent input projection on NNLM provided an addi-
tional 0.1 BLEU improvement, achieving the same performance as
RNNLM. Bilingual RNN with BOW representation performed bet-
ter than RNNLM by 0.4 BLEU overall. This showed that the bag-
of-word representation of a source sentence provided useful infor-
mation for SMT. NNJM outperformed bilingual RNN with an addi-
tional 0.7 BLEU improvement. This implies that the word ordering
of a source sentence provided additional information compared to
bag-of-word representation. Since RNN training employed factor-
ized output classes, the estimated probabilities may be suboptimal
compared to NNJM using the full output vocabulary. With position-
dependent linear projection, we observed additional 0.3 BLEU im-
provement compared to the NNJM (CI) baseline. This may suggest
that relative word position within an input window provides useful
information for better projection. To show the importance of the
shared matrices in Eqn 5–6, we removed the shared components and
retrained the model. We observed slight degradation compared to
the NNJM baseline. This may be due to the increased number of
parameters (7 times more projection matrices for a 14-gram NNJM)
without proper regularization.

With context-dependent linear projection using 3-word source
and target windows in NNJM, we achieved additional 0.5 BLEU
improvement compared to conventional NNJM. Result showed that
contextual information was important for more accurate linear pro-
jection. When we apply position-dependent modeling on context-
dependent projection matrices, we did not observe further gain. This
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may imply that word context window and word positions are not
complementary.

Table 2. Reranking test results using various neural network models.

Setup Overall
Baseline 34.7
NNLM 35.0

NNLM (CD) 35.1
RNNLM 35.1

Bilingual RNN (BOW) 35.5
NNJM (CI) 36.2

NNJM (PD w/o shared matrix) 36.1
NNJM (PD) 36.5
NNJM (CD) 36.7

NNJM (PD+CD) 36.7

5.2. Discussion

One may argue that context-dependent linear projection actually ex-
ploits more source and target words. With a projection window of
size three, two extra contextual words were used at the boundary po-
sitions. The source of the gain, whether the extra contextual words
or the context-dependent projection, was unclear. To understand this
better, we trained NNJM with 13 contextual words on the source side
and 5 contextual words on the target side; context-independent pro-
jection matrices were still employed. Table 3 shows that although
the number of parameters was increased after enlarging the context
sizes, this only brought a marginal gain of 0.1 BLEU. Comparing the
number of model parameters, a 3-window context-dependent pro-
jection matrix has O(|V ||Y |) additional parameters, where Y is the
dense vector after linear projection, i.e., |Y | = 192 throughout our
experiments. |V | is the input vocabulary size. On the other hand,
NNJM with 13 contextual words on the source side and 5 contex-
tual words on the target side has O(|H||Y |) additional parameters,
where |H| = 600 hidden nodes. Since |V | >> |H|, NNJM with
context-dependent linear projection has more parameters to fit the
training data. Increasing the number of parameters in this way was
more fruitful.

Table 3. BLEU performance of NNJM with different numbers of
contextual words.

Setup # Source context # Target context Overall
NNJM (CI) 11 3 36.2
NNJM (CI) 13 5 36.3
NNJM (CD) 11 3 36.7

Another question is the effect of the size of the projection win-
dow on MT performance. Table 4 shows the BLEU results. Increas-
ing the projection window size from 1 to 3 on the source side yielded
0.2 BLEU improvement. Applying context-dependent projections
on both sides yielded additive improvement. On the other hand, fur-
ther increasing the window sizes did not improve performance: a
degradation was observed with window size of 5. This may be due
to the significant increase in the number of model parameters and
there were insufficient training data.

Table 4. BLEU performance of NNJM with different projection
window sizes.

Setup Source window Target window Overall
NNJM (CI) 1 1 36.2
NNJM (CD) 3 1 36.4
NNJM (CD) 3 3 36.7
NNJM (CD) 3 4 36.7
NNJM (CD) 5 5 36.3

6. CONCLUSIONS

In this paper, we have presented two approaches of linear projections
of sparse inputs with an application to neural network joint model-
ing for statistical machine translation. The results showed that both
context-dependent and position-dependent linear projections yielded
consistent improvement in machine translation performance as com-
pared to context-independent projections. In the future, we will in-
vestigate using rich input representation such as part-of-speech tags
and discourse context for NNJM.
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