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ABSTRACT

We propose Inference Knowledge Graph, a novel approach of
remapping existing, large scale, semantic knowledge graphs
into Markov Random Fields in order to create user goal track-
ing models that could form part of a spoken dialog system.
Since semantic knowledge graphs include both entities and
their attributes, the proposed method merges the semantic
dialog-state-tracking of attributes and the database lookup of
entities that fulfill users’ requests into one single unified step.
Using a large semantic graph that contains all businesses in
Bellevue, WA, extracted from Microsoft Satori, we demon-
strate that the proposed approach can return significantly
more relevant entities to the user than a baseline system using
database lookup.

Index Terms— Knowledge graph, spoken dialog system,
Markov Random Fields, linked big data

1. INTRODUCTION
Within the field of spoken dialog systems (SDSs) for task ori-
entated conversations, the problem of accurately tracking the
user’s goal (e.g. finding restaurants that satisfy a number of
user constraints) has received considerable attention in the
literature [1, 2]. One promising branch of research has fo-
cused on the statistical modelling of uncertainties and ambi-
guities encountered by dialog managers (DMs) due to Auto-
matic Speech Recognition (ASR) and Spoken Language Un-
derstanding (SLU) errors, and ambiguity in natural language
expressions. Included among the most successful statistical
approaches are graphical models, e.g. [3, 4, 5]. In such mod-
els a DM computes a probability distribution over the set of
possible user goals, referred to as its belief, and acts with
respect to the distribution rather than the most likely goal.
To make the update of such probabilistic graphical models
tractable, the graphs are commonly factorized [4, 6] and ap-
proximate inference methods are applied. Approximate infer-
ence methods range from partitioning of probability distribu-
tions and applying handwritten transition likelihoods/update
rules [5] to highly factorizing the graphical model and apply-
ing an inference update method such as loopy belief propaga-
tion or blocked Gibbs sampling [3, 4]. In all these approaches,
the aim is typically to track the user’s goal in terms of at-

1Work conducted while interning at Microsoft.

tributes that can be used to describe and look up actual enti-
ties of interest in some underlying database. For example, in
a restaurant search scenario the DM will track the cuisine and
location that the user is requesting (e.g. Italian restaurants in
the downtown area) and use a separate database lookup to in-
form itself as to whether entities matching these requirements
exist and return results to the user.

With the emergence of conversational personal assistants
on mobile devices, e.g. Siri, Google Now and Microsoft’s
Cortana, there has been a surge of interest in exploiting web
search resources, especially the large Resource Description
Framework (RDF) semantic knowledge bases (also known as
a semantic knowledge graphs), to reduce the manual work
required in expanding SDSs to cover new domains, intents
or slots [7, 8, 9, 10]. An example of a popular and well
known semantic knowledge graph is Freebase [11]. A se-
mantic knowledge graph represents information using triples
of the form subject-predicate-object where in graph form
the predicate is an edge linking an entity (the subject) to its
attributes or another related entity, see Figure 1. Other seman-
tic knowledge graphs are Facebook’s Open Graph, Google’s
Knowledge Graph and Microsoft’s Satori. The latter two
contain information covering many domains (people, places,
sports, etc.) and underpin the entity related results that are
generated by Google’s and Microsoft Bing’s search engines,
e.g. a search on “Leonardo da Vinci” will display related art,
such as the Mona Lisa, and also other famous artists.

Fig. 1. Part of a semantic knowledge graph representing the
relationships, described as RDF triples, between the entities
Roberto Benigni (e1) and the film “Life is Beautiful” (e2).

Work on utilising semantic knowledge graphs in SDSs
has largely focused on automating the collection of language
corpora aimed at training SLU models, e.g. intent detection
[8], relationship detection [9] and entity detection [7]. Our
approach in this paper solves a different problem. We con-
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sider whether it is possible to specify a transformation from
an existing semantic knowledge graph to a graphical model,
specifically a Markov Random Field (MRF) [12, Chp.8], over
which it is possible to maintain a probability distribution rep-
resenting the likely state of the dialog. Such an approach, if
possible, would reduce the manual effort involved in the de-
sign and development of statistical DMs in that manual fac-
torization of the graphical model to suit the domain would be
avoided through simply inheriting the existing factorization
of the semantic knowledge graph.

The remainder of the paper is set out as follows. Related
work is described in more detail in Section 2; Section 3 uses a
toy knowledge graph to illustrate the proposed approach. Sec-
tion 4 describes the Inference Knowledge Graph algorithm.
Section 5 the experimental setup and results and Section 6
concludes and discusses future work.

2. PREVIOUS WORK
To our knowledge, transforming semantic knowledge graphs
to graphical models for the purpose of dialog state tracking is
a new area of work, however, it is constructive to contrast our
approach with related works in the areas of dialog manage-
ment and exploiting large semantic knowledge graphs.

The Bayesian update of dialog state (BUDS) dialog sys-
tem [4] uses a highly factorized graphical model to maintain
a belief distribution reflecting the state of the dialog. This dis-
tribution is updated using the approximate inference method
of loopy belief propagation [13]. The factorization of the
graph for BUDS is manually designed with the weights on the
graph being updated using the Natural Actor Belief Critic [14]
learning algorithm, based on training with simulated users.
The graphical model maintains a distribution over slots (at-
tribute values) that exist in the Tourist Information domain.
Entities, such as restaurants, are looked up from a separate
database. In contrast, our approach automatically creates a
factored graph from the existing semantic knowledge graph
and embeds the entities within the factored graph.

A number of approaches have been presented that use se-
mantic knowledge graphs to help automate the construction
of SDSs. Many of the approaches utilize the entity and re-
lationship knowledge encoded in the graph to collect train-
ing data in a distantly supervised manner, e.g. filtering web
browser query-click logs using the existence of matching en-
tity names or relationships in the semantic graph [7], or col-
lecting natural language surface forms for relationships that
exist within the graph by composing web search queries [8].
Likelihoods of the existence of intents or slots within a do-
main or of the relationships between entities have also been
computed from semantic knowledge graphs [9, 10] or used
to seed latent Dirichlet analysis that is applied to another cor-
pora, such as Wikipedia [9]. The data thus collected is used to
build various conversational and SLU models, e.g. intent, slot,
entity and relation detection models. This contrasts with our
approach as we attempt to use the graph structure at runtime
rather than deriving training data for off-line development of

models. One approach [7] learns CRF models that use previ-
ous turn context to perform entity extraction and entity type
labeling. While the entity extraction model’s output is super-
ficially similar to that presented in this paper, the target output
is different. Our aim is to track the entities that correspond to
the user’s overall goal (which is a function of the whole dia-
log) and not the accurate identification of entities that occur
within each utterance in the dialog.

The simplifying assumptions made in this initial experi-
ment mean that the proposed approach somewhat resembles
spreading activation approaches for information retrieval
[15], which have been applied to web retrieval [16] and
large semantic knowledge graphs [17]. Our approach differs
in the use of a MRF representation and Mean Field Vari-
ational inference. These techniques allow our approach to
be potentially far more expressive in the probabilistic rela-
tionships that we encode in the MRF. For example, while in
the currently implementation we have a one-to-one mapping
between edge factors in the MRF and semantic graph edges,
and these factors have equal potentials in both directions, our
future plans include exploring more sophisticated mappings
between the two graphs including MRF factors that have
unequal potentials or which cover multiple semantic graph
edges. This will allow the MRF to more accurately capture
the interactions between entities and attributes.

Although the Dialog State Tracking Challenge 2 & 3
[2] would be an ideal test bed for our approach, a semantic
knowledge graph covering the tourist and restaurant domains
in Cambridge UK was not readily available.

3. A TOY EXAMPLE
We start from a simple toy example to deduce the general-
ized algorithm. Imagine in a city with only three restaurants
(teletype font indicates a node in the graph and the at-
tribute nodes – Cusine and Price – are linked to their corre-
sponding restaurant nodes as shown in Figure 2.):

1. Restaurant Wild Ginger is Expensive and serves
Asian Fusion food

2. John Howie Steak House is also Expensive
and serves American cuisine

3. McDonald’s serves American fast food and is
Cheap

We assume in the first turn the user said ‘I want an expen-
sive American restaurant.’ and suppose the ASR correctly
recognized the spoken utterance and the SLU component
identified the value for attribute type Price is Expensive
and the value for attribute type Cuisine is American.

The first step is to convert the semantic knowledge graph
into a MRF factor graph by introducing factor potentials
over nodes and edges in the original graph.2 Every node in
the knowledge graph becomes a binary (on or off ) random
variable xn that indicates how likely the node represents the

2The backbone of the semantic knowledge graph in this example has the
shape of a chain but larger graphs will contain multiple loops.

5347



Table 1. Pairwise edge potentials (Node 1 is connected with
an undirected edge to Node 2).

Node1/Node 2 on off
on P > 1 1
off 1 P > 1

user’s goal, i.e. is on. Potential functions fi in the resulting
MRF are defined as follows. No prior bias is imposed on
nodes and their potentials fi(xn) are set such that they are
equally likely to be on or off when no evidence is observed.
Pairwise edge potentials fj(xn, xm) are defined as in Table 1.
For P > 1 two nodes connected by an edge are more likely
to be the same state, i.e. both on or off, than in opposite
states. This encourages on or off status to propagate from the
evidence nodes to all the other connected nodes in the MRF.

The second step is to create evidence nodes American’
and Expensive’ (where the symbol ’ is used to indicate
an evidence node) and append them to the corresponding
original attribute graph nodes American and Expensive
respectively as shown in Figure 2. Since evidence nodes
American’ and Expensive’ are observed, they are
clamped on. With clamped evidence nodes, the new graph-
ical model becomes a conditional MRF. Once the evidence
nodes from the current user turn have been attached to the
MRF, conditional inference is performed and the marginal
probability p(xn) =

∑
x\xn

p(x) for every variable node xn

in the MRF is computed3; where x\xn is the set of all x with
xn excluded and p(x) = Πjfj is the joint distribution. We
use the UGM toolkit [18] for inference. Lastly, all the nodes
in the MRF are ranked based on p(xn) and the top K entity
nodes (e.g. restaurant nodes) are presented back to the user.

Figure 2 shows the marginal probability heat map for the
likelihood of each node being on after exact inference.4 If we
order the restaurants based on their marginal probabilities, we
can see that John Howie Steak House has the high-
est marginal likelihood of being on compared to the other
two restaurants Wild Ginger and McDonald’s. This
aligns with what we expect: observations American’ and
Expensive’ are combined together to raise the probability
of John Howie Steak House being on, even though
Wild Ginger is also Expensive and McDonald’s
also serves American food.

At this point we are done with the first user turn and the
same process (the above-mentioned steps) can be repeated for
the second user turn and so on. The evidence nodes will ac-
cumulate in the MRF as the dialog proceeds.

Even though this is a toy example, it demonstrates a proof
of concept of transforming a semantic graph into a MRF and
performing inference which results in a set of marginals that
can represent the likely user’s goal state. A dialog policy
could then be trained to act with respect to the distribution

3This can be done efficiently using message passing approaches.
4The graphical model for this example is simple enough to allow exact

inference.

Fig. 2. A heat map of marginal probability for the value on
for the conditional MRF after inference on first user turn with
evidence nodes American’ and Expensive’ appended.
The hotter the color, the more likely the node will be on (each
node can take two values – on/off – with equal prior proba-
bility). The color of the evidence nodes is brown – the hottest
– because, as observations, their probability of being on is
clamped to 1.0 throughout inference.

of marginal values (similar to BUDS SDS[4] whose policy is
trained with respect to marginals).

P controls the spread of influence between nodes. Its
value is dependent on the graph size and structure, and the
accuracy errors in approximate inference. In this work it was
manually tuned to ensure the effect of observations spread fur-
ther than immediate neighboring nodes whilst avoiding uni-
form saturation of large network cliques due to the presence
of some highly interconnected nodes.

4. INFERENCE KNOWLEDGE GRAPH
ALGORITHM

We formally propose the complete Inference Knowledge
Graph (IKG) algorithm as follows:

1. Convert the semantic knowledge graph into a MRF:
(a) Every node in the knowledge graph becomes a binary

random variable
(b) Define potential functions over the nodes and edges

2. Append evidence nodes to the MRF:
(a) Map SLU slot values to corresponding nodes
(b) Clamp the evidence nodes to be on (when the user pro-

vides information or confirms) or off (when the user
issues a negation)

3. Perform exact or approximate inference on the MRF to cal-
culate the marginal probability for each node

4. Sort all the nodes by their marginal likelihood of being on and
return top K entity nodes to the user

5. Apply some transition function T to project network marginals
into the next turn5 and repeat from 2.

5In this paper we assume an identity function resulting in accumulation
of observations over turns.
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Table 2. Evaluation results – average fraction of annotated SLU slots covered by top K business entities.

Top K(=1,2,3,5,7)
Entities

Transcription SLU ASR 1-best SLU ASR N-best SLU

Baseline
Inference

Baseline
Inference Inference

Knowledge Graph Knowledge Graph Knowledge Graph
Top 1 0.675 0.694 0.620 0.638 0.634
Top 2 0.676 0.698 0.620 0.642 0.640
Top 3 0.676 0.700 0.620 0.644 0.644
Top 5 0.676 0.702 0.622 0.645 0.646
Top 7 0.676 0.703 0.622 0.646 0.647

5. EXPERIMENTAL SETUP AND EVALUATION
If the resulting MRF is to form part of a DM, the distribution
of marginals that is induced by the attachment of evidence
nodes and inference step should track the user’s intended goal
during dialogs. As entities are embedded in the MRF, our ex-
pectation is that a list of the entities ordered by their associ-
ated marginal likelihoods will match against the requirements
specified by the user. To automatically measure how closely
the ordered list of entities match the user’s requirements we
adopt a surrogate measure for relevance that is motivated by
the availability of annotated dialogs. For each dialog we col-
lect the complete set of annotated slot values mentioned in all
turns. Then for the top K entities generated by the MRF at
the end of each dialog, we collect the set of attribute values
associated with those entities. We then compute the fraction
of annotated slot values that are matched by entity attribute
values. In performing the matching we use a manually con-
structed dictionary to canonicalize slot values. This same dic-
tionary is used to canonicalize slot values output by the SLU
in order to attach them to the graph as evidence nodes.

To test our algorithm we extract a semantic subgraph from
Satori that contains all the businesses in Bellevue, WA along
with their attributes. The extracted graph has 43,208 nodes
(18,142 business entity nodes and 25,066 attribute nodes) and
108,288 edges. There are 8 attribute types and each attribute
type can have multiple values, as illustrated below:

Atmosphere: Lunch Spot, Family-friendly
Dining, Date Spot, Romantic, . . .

Cuisine: American, Café, Sandwiches, Fast
Food, Japanese, . . .

Price: Cheap, Expensive, . . .
We evaluated our system using dialogs of real users inter-

acting with Cortana – a personal assistant on Windows mo-
bile phone – during the week of June 30th to July 4th, 2014.
Since the selected subgraph only contains businesses in Belle-
vue, WA, we only used dialogs that are business or location
related queries and either mention no absolute location or the
absolute location provided by the user contains the keyword
‘Bellevue’. This gave us a total of 12,607 dialogs, of which
6,647 are spoken dialogs, the remainder being typed input.
We test three conditions; (i) using the complete set of typed
and human transcribed spoken dialogs as input to the SLU,
or for the 6,647 spoken dialogs (ii) use the ASR 1-best or (iii)
ASR N-best output as input to the SLU.

We compare the IKG results against a database lookup
baseline. From the results shown in Table 2 we can see that
all graph methods outperform the baseline significantly (with
p < 0.05). Although using ASR N-best does not further im-
prove the system performance, it demonstrates that the IKG
method has the ability to resolve noisy input. The occurrence
of slots in the dialogs that cannot be matched by entity at-
tributes, such the relative distance slot nearby as in ‘find the
nearest café’, limits the maximum score that is achievable
when using this measure.

To further understand the gain of our system we divide
the 6,647 spoken dialogs into two parts; one part contains all
the dialogs where the baseline returns empty results (327 di-
alogs), the other part includes the rest of the dialogs where
baseline returns at least one business entity (6,320 dialogs).
We calculate the accuracy of ASR 1-best SLU for both base-
line and IKG systems on the two partitions. When the base-
line returns at least one result, it and the IKG’s scores are
equally good. Therefore the gain is due to the IKG gracefully
handling dialogs where baseline fails.6 The IKG on the 327
dialogs ranges from 0.35 (for K = 1) to 0.50 (for K = 5).

We also note that during a dialog if a user only mentioned
a business name, e.g., a restaurant name, the baseline would
return only one entity that matches that business. However,
the graph would return a list of businesses that share similar
attributes in addition to the one mentioned by the user.

6. CONCLUSION AND FUTURE WORK
Using a semantic graph containing all businesses in Belle-
vue, WA extracted from Microsoft’s Satori, we demonstrate a
novel approach of remapping semantic knowledge graphs into
MRFs which results in a graphical model that can be used to
successfully infer the user’s goal state in a dialog. We show
that the MRF model returns significantly more relevant enti-
ties to the user than a database lookup baseline.

Future directions include (i) reflecting ASR confidence
scores in the factor potentials of evidence nodes, instead of
clamping to on or off, which may improve ASR N-best per-
formance, (ii) more sophisticated mappings to the MRF in-
cluding non-uniform P or learned factor potentials (e.g. from
dialog corpora) and (iii) modeling temporal transitions T , e.g.
goal change, between dialog turns.

6An example of where the baseline can fail is where SLU output contains
both Mexican and Japanese, where one of them is a recognition error.
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