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ABSTRACT

It is very attractive for the user to retrieve photos from a huge
collection using high-level personal queries (e.q. uncle Bill’s
house), but technically very challenging. The previous work
proposed a set of approaches to achieve the goal assuming
only 30% of the photos are annotated by sparse spoken de-
scriptions when the photos are taken. This includes fusing the
sparse spontaneously spoken features with visual features of
the photos by non-negative matrix factorization (NMF), and
enhancing the results with two-layer mutually reinforced ran-
dom walk. However, because the speech annotation is very
sparse, the retrieval is very often dominated by the very com-
plete visual features. In this paper, we propose to use contin-
uous space word representations to extend the sparse speech
information and expand the photo representation to enhance
the retrieval model. Very encouraging improvements were
observed in the preliminary experiments.

Index Terms— image retrieval, speech annotation, non-
negative matrix factorization, word representation, fused fea-
tures

1. INTRODUCTION

With the popularity of digital cameras and smart phones,
many people saved huge collections of personal photos, but
found it challenging to browse across the collection to find
a desired photo. Users usually prefer to use personal words
as queries to look for photos (e.g. who, where, when, what
(objects/events), such as “uncle Bill’s house” or “wedding
ceremony”’). Content-based image retrieval [1, 2] is not use-
ful here, because it requires an example photo as the query.
The huge number of annotated photos over the Internet can be
useful in identifying photos of publicly known objects (such
as "White House”) [3, 4], but not necessarily for the personal
photo descriptions considered here. Manual annotation of
each individual photo is certainly useful, but not attractive
at all. This led to the idea of annotating photos with speech
[5, 6], and this task seems to be simply the spoken document
retrieval [7, 8, 9].

A major issue in spoken document retrieval is that the
query and its relevant documents may use different set of
words. Latent topic or factor analysis can handle this is-
sue to some extent, with probabilistic latent semantic analysis
(PLSA) and non-negative matrix factorization (NMF) as two
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typical examples [10, 11]. But PLSA and NMF may not be
able to solve the problem here, because the query and the la-
bels for related photos may be in several different categories
(e.g. some photos by where and some by who, while the query
by event) or use different sets of words, and the latent relation-
ships among different terms, specially in different categories,
very possibly cannot be trained with very sparse personal an-
notations. This led to the concept of using image features
jointly with speech annotations [12]. Related photos may be
linked by image features if annotated very differently, or even
not annotated at all.

In a recent work, we proposed to fuse local image fea-
tures (e.g. visual words by clustering low level image features
[13, 14]) and global image concepts(e.g. “people” or “out-
door” by Columbia 374 detector [15]) with the sparse, free-
form, and spontaneously spoken annotations [16] and model
the relationships among photos and their labels with NMF,
and enhance the retrieval process considering different types
of features with two-layer mutually reinforced random walk
(MRRW) [17, 18]. Only a few words of annotation regard-
ing the photos were needed for only a small percentage of the
photos. The sparse speech annotations served as the user in-
terface, while photos without annotation were automatically
related by fused feature semantics from NMF and two-layer
MRRW.

However, in the above work, the training process of NMF
is dominated by the very heavy image features while the very
sparse speech annotations carry relatively less weight, even
though the words in speech annotations actually bring directly
semantic and personal information. We therefore propose in
this paper to use continuous space word representations to
enhance the NMF model. Continuous space word represen-
tations obtained by neural networks have been shown to be
able to properly characterize the semantic and syntactic be-
havior of words [19, 20, 21]. Various approaches such as re-
current neural networks (RNN) [22], continuous bag-of-word
model (CBOW) and continuous skip-gram model [23] have
been carefully considered and analyzed. We use these word
representation approaches to find semantically/syntactically
related words to extend the very sparse speech annotation and
enhance the whole retrieval model. Substantial improvements
were obtained in the preliminary experiments.
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2. THE PROPOSED APPROACH
2.1. Overview of the proposed approach

As shown in Figure 1, in the preparation phase on the left, for
each photo at the lower left corner, we first extract the visual
words (Block (B)) and global visual concept features (Block
(C)) from the photo, and speech features (Block (D)) from the
annotation, if available. We also train the word representation
model from a large text corpus (Block (E)(F)), based on which
extended visual concepts and speech features (Block (G)) are
obtained. Each photo with these visual words, global visual
concept features, speech features and extended visual con-
cepts and speech features is then taken as a document (Blocks
(H)). A matrix is constructed for all photos in the archive
which is further factorized into an NMF model (Blocks (I)(J)).
In the retrieval phase on the right, the user query includes only
very few words in text form (or transcribed if spoken). The
NMF model gives the first-pass retrieved results (Block (K)),
over which two-layer MRRW is performed (Block (L)) to give
the final results. Blocks (E)(F)(G) are new in this paper.
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User query
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Fig. 1: The proposed approach
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2.2. Visual Words/Columbia 374 as Local/Global Visual
Features

We use the Scale-Invariant Feature Transform (SIFT) [24] to
extract the feature vectors from images, and then produce the
codebook of visual words by k-means clustering. The cen-
ters of the learned clusters are taken as codewords called vi-
sual words, each representing some similar patches (or lo-
cal features) on images. In this way, an image is represented
as the term frequencies of the visual words. On the other
hand, Columbia374 detector developed by Columbia Univer-
sity [15] is able to categorize each photo among 374 possible
hlgh level global visual concepts (e.g. “people”, “outdoor”,

”streets”). We take each of these global visual concepts as a
term, and the score for the term as the term frequency.

2.3. Speech Features

The speech annotation is the key information here because
it provides the core personal semantic concepts such as un-
cle Bill’s house” or "wedding ceremony”. But the speech

annotation can be very spontaneous under varying acoustic
conditions including out-of-vocabulary (OOV) words. The
one-best recognition accuracy can be low, so each utterance is
represented as a lattice. But we never know whether a term is
present in an utterance represented by a lattice or not. We thus
evaluate the expected term frequency F'[t|z] for each possible
term ¢ in an utterance x as:

Flt|z] = Z N(u,t)P

allu

where N (u,t) is the occurrence count of the term ¢ in a path
w in the lattice for the utterance x, and P(u|x) is the poste-
rior probability of u based on acoustic and language models.
Here we take a word or a subword n-gram (a segment of n
consecutive subword units) as the speech term ¢ and evaluate
the expected term frequencies. The subword n-gram is to take
care of the OOV words to some extent.

(u|z) (D

2.4. Non-negative matrix Factorization (NMF) and Se-
mantic Retrieval

With the visual and speech features discussed in Sections 2.2
and 2.3 mentioned above, each photo is a document consist-
ing of discrete image terms (visual words and Columbia374
visual concepts) and speech terms with term frequencies. The
whole photo archive is then represented as a target matrix A
in Figure 2, in which each row is a vector representing a photo
(a document d;, i=1,...,N), each column is a term (¢;,j=1,...M,
speech terms on the left (can be empty) and image terms on
the right), and each element in the matrix is the corresponding
term frequency for the photo.

|mage terms

O
1

Fig. 2: Matrix representation for the photo archive. The im-
age and speech features are all represented by discrete terms
in term frequencies.

speech terms

documents

The non-negative matrix A in Figure 2 is then factorized
into two non-negative metrics W and H,

Anxm ~ WrnxpHpxm, or Aj; = WiH;  (2)
where A;; is the (i, j) element of A, W; the i-th row of W
and Hj the j-th column of H, and D < N, M is the number
of latent topics or factors, and WH is the compressed ap-
proximation of A. For example, each column of A is approx-
imated by a linear combination of columns of W weighted
by the elements of H, etc. In this way the speech and image
features are fused.

During retrieval, the query () can be in either text or
speech form, represented as a sequence of L observed speech
terms (words or subword n-gram), @ = {q1, g2, ...,qr}. The
documents d (or photos) are then sorted by the relevance
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score S(Q, d):
L
d) =Y WyH, 3)

where W, is the row vector of W corresponding to document
d, and H; the column vector of H corresponding to ¢; € Q.
In this way, it becomes possible to retrieve the photos without
speech annotation, or with sparse speech annotation in words
in different categories from the query (e.g. where and who),
because the matching is not based on the appearance of the
terms, but on the latent relationships among fused features.

2.5. Two-Layer MRRW

The relevance scores (3) from NMF can be further enhanced
by the two-layer MRRW. Each node in the lower layer repre-
sents a photos in the first-pass retrieved list from NMF, while
that in the upper layer represents a photos in the first-pass re-
trieved list having speech annotation, or represents one of the
D topics obtained by NMF in (2). Let S((]O ), SEO) represent
the vectors for the relevance scores S(Q,d;) from NMF in
(3) for nodes in upper and lower layers, and S [(J), St I repre-
sent the enhanced version of them at the t-th iteration. The
score propagation can be expressed as random walk in (4) be-
low and shown in Fig 3,

Sy = (1-a)SY +a- ElyEyrSyY (4-1)
sV =

SO + o EL ErpSyY (4-2)
“
where Fyy, By are respectively the upper-to-upper, upper-
to-lower row-normalized cosine similarity matrices , similarly

for Err, Ery. For example in (4-2) the scores of upper
layer S =1 are weighted first by the lower-to-upper similar-
ity Ery then by the lower-to-lower similarity E 1, and then

contribute to the scores of the lower layer S(Lt)
Uppe Layer @

o o,
s
wer- Layer@ ‘. @

Fig. 3: A simplified example of the two-layer MRRW.

2.6. Continuous Space word Representation for Enhanc-
ing the Sparse Matrix

The matrix A for factorization in (2) is very sparse specially
in the part of speech terms. In our experiment, only 30% of
photos are annotated but all the photos have visual features,
and only 0.5% of elements in the speech term part of matrix
A are non-zero, but 10% for the image term part. So the ma-
trix A is dominated by the visual features, though the speech
terms are primarily words carrying directly semantic informa-
tion. So data sparsity is an important problem.

Many different models were developed for representing
words as vectors in continuous space [19, 20, 21, 22, 23],
among which those learned with neural networks have been
very successful. In the feedforward neural network language
model (NNLM) [25], a linear projection layer and a non-
linear hidden layer were used to learn the word vector rep-
resentations. Recurrent neural network language model as
in Fig.4(a) used the hidden layer at the previous time, h(t-
1), with a recurrent structure to take into account the previous
context, while the word representation vectors [22] can be ob-
tained from the transformation for the hidden layer. Recently,
new log-linear models were proposed and shown useful. Con-
tinuous bag-of-words model (CBOW) as in Fig.4(b) learned
to predict the present word w(t) based on the preceding and
following words such as w(t-2), w(t-1), w(t+1), w(t+2) via a
projection layer without non-linear elements. The word rep-
resentation can be obtained from the transformation for the
output layer. Continuous Skip-gram model as in Fig.4(c) is
very similar to CBOW, but with the layers reversed. The word
representation can be obtained from the transformation for the
projection layer [23]. It was shown that CBOW and contin-
uous Skip-gram models are better than NNLM and RNNLM
for both syntactic and semantic tasks.

With the word representation, for each photo, the Columbia
374 visual concept represented by a word (e.g. “people”,
“outdoor”, etc.) is used to find the top L similar words with
word representation cosine similarity above a pre-defined
threshold. The term frequencies for these similar words (as
speech terms) are then added by the corresponding cosine
similarity properly weighted by the Columbia 374 visual
concept score. This is repeated for each of the Columbia 374
visual concepts with scores above a pre-defined threshold for
the photo. This is also done for top K word arcs in the lattices
of the speech annotation for the photo. This is a kind of ”doc-
ument expansion” to extend the visual concepts and speech
features for each photo, based on which the NMF model is
enhanced.

w(t-2) w(t-2)
w(t-1) wi) - wl w(t-1)
w(t+1) w(t+1)
w(t+2) w(t+2)
L <
h(t-1)
(a) (b) (c)

Fig. 4: Neural networks for modeling word representations:
(a) RNNLM (b) CBOW (c) Skip-gram

3. EXPERIMENTS
3.1. Experiment Setup

The photo archive was taken from a Flickr user who has more
than ten thousand photos on the web with diversified topics.
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We randomly selected 7777 from them to be used here. Sev-
eral students generated the annotation text (primarily in Chi-
nese) spontaneously, most indicating one or two categories of
information (e.g. where or who) about the photos explicitly or
implicitly, many including OOV words. The audio for these
annotations were recorded by 57 students without constraints
on the microphone or the acoustic conditions.

The speaker independent (SI) acoustic models were
adapted by 30 utterances for each speaker to generate the
speaker adapted (SA) models. A language model interpolated
from two models respectively trained by news corpora and
Plurk corpora was used. The recognition accuracy for the
very free speech annotations was only 40.3% for words. Syl-
lable bigrams (segments of two consecutive syllables as the
subword n-gram) and words were used for speech terms when
evaluating the expected term frequency as in (1). Only 30%
of the photos (2100) randomly selected out of the 7777 were
allowed to have speech annotations, while the other 70% were
assumed to have image features only. In the matrix A, each
row includes approximately 32 thousand speech terms, 10
thousand visual words and 374 Columbia concepts as image
terms. Another five students generated 32 queries (4 where, 4
who, 4 event and 20 object, different from the previous work
[16]) and labeled their ground truths for evaluation. Each
query is a Chinese word composed of 2 or 3 syllables. For
word representation, we used a corpus of 46 millions words
collected from facebook, plurk, news, including photo anno-
tations, to train the RNNLM, CBOW and Skip-gram models
for 740k words, each with a 100-dimensional word vector.
For NMF we empirically set D = 90 topics. For each query
we retrieved the top 200 photos with NMF and used them
in the two-layer random walk (200 nodes). All performance
was in mean average precision for top 50 (MAP@50) [26].
In each experiment, the results below are the average of 10
tests, in each of which the NMF is randomly initialized.

3.2. Experimental Results

The results are listed in Table 1, in which Section (A) is for
the baseline NMF, Section (B) is when the matrix A was
enhanced by word representations obtained with RNNLM,
Skip-gram and CBOW, and Section (C) is when random walk
was used in addition to the best of Section (B). From Sec-
tion (B) we see the extra words found by word representa-
tions really helped, and were much more helpful when based
on the Columbia concepts (rows (c)(e)(g)) than on word arcs
of lattices (rows (b)(d)(f)), obviously because the Columbia
concepts gave clearer global concepts for the photos but the
word arcs of the lattices were very noisy. Also RNNLM
and Skip-gram were close, but CBOW was much better. So
in row (h) for CBOW, we tried to combine the extra words
based on Columbia concepts and word arcs of lattices ((f)
plus (g)), with a result slightly better than row (f), but worse
than row (g), obviously because the noisy lattices disturbed
the Columbia concepts.

In the first part of Section (C), only the lower layer was
used in single-layer random walk, in which the photo scores
are propagated and smoothed based on the similarity matri-
ces evaluated from expected term frequencies (row (i)), those
based on word entries extended with word representations

(row (j)), and from the visual word features (row (k)). We see
re-ranking by random walk offered very good improvement,
and the word representations proposed here really helped,
even with a single layer. In the second part of Section (C)
for two-layer, in row (1) the upper layer includes only those
photos from NMF having speech annotations, with the row-
normalized similarity matrices based on the expected term
frequencies for Eyp, Columbia374 features for Fpp and
FEry, and visual word features for Er;,. Row (m) is the
same as row (1) except the upper layer also included those
word items extended by word representation proposed here.
Row (n) is very similar to row (1), except the nodes on the
upper layer are the D topics obtained in NMF (columns of
W or rows of H), with the row-normalized cosine similar-
ity between the corresponding rows of H as Eyy, between
the corresponding columns of W' as the matrix Ery, and
S[(JO) = [1,1,...,1]T/D, or assuming all topics have equal
scores initially, and those based on visual word features for
FErr. We see the two-layer MRRW was significantly better
than the single-layer random walk, and the speech features
extended by word representaion based on Columbia visual
concepts (row (m)) can achieve better performance (rows
(m) vs (1)). The best MAP@50 (CBOW word representation
based on Columbia concepts and two-layer MRRW, row(m))
achieved 1.95 times higher performance than the NMF base-
line of 12.88% (row(a)).

Table 1: Experimental results: (A) NMF baseline, (B) plus
word representation, and (C) best of (B) (row (g)) plus ran-
dom walk

Methods Types MAP@50
(A)| Baseline (a) NMF 12.88%
(b) Lattices 13.05%
B) R (c) Columbia concepts 14.64%
Skip-gram (d) Lattices 13.74%
(e) Columbia concepts 14.66%
(f) Lattices 13.07%
CBOW (g) Columbia concepts 15.72%
(h) Both ((f) plus (g)) 13.32%
. (i) Lattices 19.17%
© IS;;‘egrle (i) Extended Lattices 19.53%
(k) Visual words 21.85%
(1) Speech in upper 23.87%
Two-layer | (m) Extended speech in upper | 25.12%
(n) Topic in upper 24.85%

4. CONCLUSION

This paper considers the enhancement of the very sparse
voice annotation for semantic retrieval of personal photos.
We propose to use word representations to find semanti-
cally/syntactically related words for the word arcs in the
lattices and the Columbia visual concepts to extend the very
sparse speech annotation and enhance the model. Very good
improvements were observed in the preliminary experiments.

5344



5. REFERENCES

[1] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, and
B. Dom, ”Query by image and video content: the QBIC sys-
tem,” IEEE Computer, Sep. 1995.

[2] Smith, John R., and Shih-Fu Chang. ”VisualSEEk: a fully au-
tomated content-based image query system.” Proceedings of
the fourth ACM international conference on Multimedia. ACM,
1997.

[3] Naphade, Milind, et al. "Large-scale concept ontology for mul-
timedia.” MultiMedia, IEEE 13.3 (2006): 86-91.

[4] Yi-Hsuan Yang, Po-Tun Wu, Ching-Wei Lee, Kuan-Hung Lin,
Winston H. Hsu, ”ContextSeer: Context Search and Recom-
mendation at Query Time for Shared Consumer Photos,” ACM
Multimedia 2008(full paper), Vancouver, Canada.

[5] J. Chen, T. Tan, P. Mulhem, and M. Kankanhalli, ”An improved
method for image retrieval using speech annotation,” Proceed-
ings of the 9th International Conference on Multi-Media Mod-
eling 2003.

[6] Timothy J. Hazen, Brennan Sherry and Mark Adler, ”Speech-
based annotation and retrieval of digital photographs,” Inter-
speech 2007.

[7] C. Chelba, J. Silva and A. Acero,” Soft indexing of speech con-
tent for speech in spoken documents,” Computer Speech and
Language, vol. 21, no. 3, pp.458-478, July 2007.

[8] Yi-chen Pan, Hung-lin Chang and Lin-shan Lee, ”Analytical
comparison between position specic posterior lattices and con-
fusion networks based on words and subword units for spoken
document indexing,” Automatic Speech Recognition & Under-
standing, pp.677-682 , Dec 2007.

[9] Ya-chao Hsieh, Yu-tsun Huang, Chien-chih Wang and Lin-shan
Lee, “Improved spoken document retrieval with dynamic key
term lexicon and probabilistic latent semantic analysis(PLSA),”
ICASSP 2006, vol. 1, May 2006.

[10] T. Hofmann, “Probabilistic latent semantic indexing,” Proc.
ACM SIGIR Conf. R&D in Informational Retrieval, 1999.

[11] Lee, Daniel D., and H. Sebastian Seung. ’Learning the parts of
objects by non-negative matrix factorization.” Nature 401.6755
(1999): 788-791.

[12] Fu, Yi-sheng, Chia-yu Wan, and Lin-shan Lee. "Latent seman-
tic retrieval of personal photos with sparse user annotation by
fused image/speech/text features.” Acoustics, Speech and Sig-
nal Processing, 2009. ICASSP 2009. IEEE International Con-
ference on. IEEE, 2009.

[13] Tirilly, Pierre, Vincent Claveau, and Patrick Gros. "Language
modeling for bag-of-visual words image categorization.” Pro-
ceedings of the 2008 international conference on Content-based
image and video retrieval. ACM, 2008.

5345

[14] Yang, Jun, et al. "Evaluating bag-of-visual-words representa-
tions in scene classification.” Proceedings of the international
workshop on Workshop on multimedia information retrieval.
ACM, 2007.

[15] Yanagawa, Akira, et al. ”Columbia universitys baseline detec-
tors for 374 Iscom semantic visual concepts.” Columbia Univer-
sity ADVENT technical report (2007): 222-2006.

[16] Liou, Yuan-ming, Yi-sheng Fu, Hung-yi Lee, and Lin-shan
Lee. ”Semantic Retrieval of Personal Photos using Matrix Fac-
torization and Two-layer Random Walk Fusing Sparse Speech
Annotation with Visual Features,” Interspeech 2014.

[17] Cai, Xiaoyan, and Wenjie Li. "Mutually reinforced manifold-
ranking based relevance propagation model for query-focused
multi-document summarization.” Audio, Speech, and Language
Processing, IEEE Transactions on 20.5 (2012): 1597-1607.

[18] Chen, Yun-Nung, and Florian Metze. “Two-layer mutually re-
inforced random walk for improved multi-party meeting sum-
marization.” Spoken Language Technology Workshop (SLT),
2012 IEEE. IEEE, 2012.

[19] Hinton, Geoffrey E. Distributed representations.” (1984).

[20] Rumelhart, David E., Geoffrey E. Hinton, and Ronald J.
Williams. “Learning representations by back-propagating er-
rors.” Cognitive modeling (1988).

[21] Elman, Jeffrey L. “Finding structure in time.” Cognitive sci-
ence 14.2 (1990): 179-211.

[22] Mikolov, Tomas, Wen-tau Yih, and Geoffrey Zweig. “Linguis-
tic Regularities in Continuous Space Word Representations.”
HLT-NAACL. 2013.

[23] Mikolov, Tomas, et al. "Efficient estimation of word represen-
tations in vector space.” arXiv preprint arXiv:1301.3781 (2013)

[24] Lowe, David G. Distinctive image features from scale-
invariant keypoints.” International journal of computer vision
60.2 (2004): 91-110.

[25] Bengio, Yoshua, et al. "Neural probabilistic language models.”
Innovations in Machine Learning. Springer Berlin Heidelberg,
2006. 137-186.

[26] Garofolo, John S., Cedric GP Auzanne, and Ellen M. Voorhees.
”The TREC Spoken Document Retrieval Track: A Success
Story.” NIST SPECIAL PUBLICATION SP 246 (2000): 107-
130.



