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ABSTRACT
The most common pipelines in keyword spotting involve
some kind of speech recognition, which leads to the genera-
tion of sets of plausible hypotheses (e.g., word lattices), which
are subsequently explored. The case of out-of-vocabulary
(OOV) keywords is of special interest, because it requires
representing keywords and/or lattices in an alternative for-
mat, so that the two can match. A number of techniques for
dealing with OOV keywords have appeared in the literature;
here, we focus on (i) fuzzy-phonetic search using phonetic
confusion networks [1], and (ii) proxy-keyword search [2].
As we demonstrate in this paper, the combination of these two
diverse techniques improves the ATWV of OOV keywords by
at least 3% on average over the five development languages
used in the second year of the IARPA Babel program.

Index Terms— keyword search, speech recognition, lat-
tices, confusion networks, time quantization

1. INTRODUCTION

In commercial applications, as well as in most research stud-
ies related to speech recognition, decoding with whole-word
units seems to be the most preferred method. In keyword
spotting, where the goal is to detect the presence of given
word phrases, this can be useful; when the keywords of in-
terest are composed entirely of known (in-vocabulary) words,
it has been shown [3, 4] that the best single-system perfor-
mance is that of whole-word decodes.

When dealing with OOV keywords, things become more
complicated; as demonstrated in the literature, [3, 5], state-
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of-the-art performance is obtained only when using multiple
decodes involving sub-word units. Furthermore, combining
together decodes that involve diverse sub-word units can be
very beneficial [3]. However, if one is constrained to use
whole-word decodes (when, e.g., the speech is pre-indexed
using a whole-word vocabulary, or, when it is too expensive to
run decoding with multiple recognition units), we would like
to obtain comparable performance on the OOV keywords. For
instance, [1] generates phonetic confusion networks and then
performs fuzzy search in them. The work of [2] generates
“proxy” keywords based on phonetic confusability and then
matches them against a word lattice. This latter technique is
almost identical to the one mentioned in [6].

In this paper, we combine the techniques of [1] and [2] in
the case of whole-word decodes and show that one can obtain
substantial ATWV gains of at least 3% over the five develop-
ment languages used in the second year of the IARPA Babel
program1 Additionally, we introduce a new lattice construc-
tion, the time-quantized lattice (TQL), which is an order of
magnitude smaller than the regular lattice, and can be used as
an additional search output in the combination.

The paper is organized as follows: Section 2 briefly de-
scribes the pipelines used in this paper. Section 3 presents the
procedure for generating TQLs. Section 4 describes the data
used to generate the results of this paper. Section 5 presents
keyword spotting results, and finally, Section 6 presents con-
cluding remarks.

2. KEYWORD SPOTTING PIPELINES FOR
DEALING WITH OOV KEYWORDS

For detecting OOV keywords, one must either resort to (i)
hybrid fuzzy phonetic search strategies, in which recognition
is done in terms of words, but the search is done fuzzily based
on phonetic strings, allowing for inexact matches [1, 8, 9, 2],
or, (ii) recognition in terms of shorter units [10, 3, 11, 12, 13,
5, 14] that have a higher chance of allowing a new word. In
this paper, we focus mainly on the first category.

We next describe the keyword spotting techniques that we

1Our study is related, but quite different, from the work of [7], which
focused only on IV keyword search.
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experimented with. They can both be applied to decodes with
whole-words (although other subword units are possible) and
they specifically target the detection of OOV keywords. Both
pipelines are applied on word posterior lattices; these are lat-
tices generated after (i) computing the total score of each arc
(a linear combination of the acoustic and language model log
scores of that arc); (ii) running forward-backward in order to
compute the posterior of the arc. (This is the total probability
of all paths which pass through that arc.)

The first pipeline [1] performs a series of lattice trans-
formations which aim at generating the right amount of con-
nections, at the highest possible granularity. The steps are as
follows.

1. Whole-word posterior lattices are converted to phonetic
lattices. This is done by decomposing each word arc
into a sequence of phone arcs, and copying the word
posterior over to each one of the new arcs. The timing
of each of the new arcs is approximated by the simple
heuristic of dividing the word duration uniformly (al-
though it is certainly possible to use an annotated form
of lattice that contains the time at which each state is
visited in the decoding graph).

2. Phonetic lattices are converted to phonetic confusion
networks. This is done by using the same algorithm
[15] as for whole-words.

3. Phonetic confusion networks are searched using fuzzy
matching and dynamic programming. Each keyword is
represented as one or more sequences of phones. We
use dynamic programming with a beam search to find
all paths through the c-net for each pronunciation. The
score of a match is the product of the posteriors of the c-
net arcs and a predefined mismatch probability for each
phone insertion, deletion and substitution [1].

The second pipeline follows [2], but has been re-imple-
mented in-house to allow more flexibility. The main steps are
as follows.

1. Each keyword is represented as a finite-state transducer
(FST) [16] which encodes each keyword as a sequence
of phones (again, allowing multiple pronunciations).

2. The keyword FST, which is the union of the individual
keyword-specific FSTs, is composed with a confusion
FST which represents the cost of confusing one phone
with another, as well as the cost for inserting/deleting a
phone. (We set the identity cost to zero.)

3. The resulting FST is pruned with a threshold based on
cost, so that implausible paths are removed. For multi-
word keywords, each constituent word is treated sep-
arately so that longer keywords are not more severely
penalized.

4. A second (optional) threshold prevents too many inser-

tions by imposing a limit on the number of phones gen-
erated.

5. The resulting FST is subsequently composed with the
“Kleene +” of a phone-to-word (P2W) FST, which is
the FST representation of the inverse of the word lexi-
con.

6. The resulting “proxy-keyword FST” encodes all the
“proxy”’ forms of each keyword. It can be optionally
pruned so that the length of each proxy does not differ
too much from the length of the original keyword.

7. The “proxy-keyword FST” is further composed with
the indexed version of each posterior lattice (see, e.g.,
Figure 1 of [6] for an example of an indexed set of c-
nets—the same idea can be used for general lattices).
Extraction of hits from the resulting FST is done by
keeping a priority queue of partial paths at each node,
which is further constrained using a beam.

8. Before generation of the indexed version, the posterior
lattice is processed so that intra-word and inter-word
silences are limited to 0.1 and 0.5 seconds, respectively.

Each one of the resulting sets of detections (hits) is nor-
malized using the linear fit method of [17], followed by the
KST normalization technique of [18]. The normalized lists
are then combined together (two at a time and all together)
using the algorithm mentioned in [18].

3. CONSTRUCTION OF TIME-QUANTIZED
LATTICES

In this section we describe how a new lattice structure, the
time-quantized lattice (TQL) is constructed. The main param-
eter to consider in the construction is the duration d between
the “anchor” nodes. Smaller (resp. larger) duration corre-
sponds to finer (resp. coarser) time quantization and more
(resp. less) faithfulness to the original lattice.

To build the TQLs, the following steps are followed for
each utterance:

1. The start and end times of the utterance correspond to
the start and end times of the TQL. When the utterance
duration is less than d, the original lattice is used.

2. The nodes of the TQL are “anchor” nodes, placed at
regular time intervals. That is, starting with the start
time of the utterance, each TQL node corresponds
uniquely to a multiple of d seconds after that. Note that
d may be slightly adjusted to make sure that the time
of the last node is exactly equal to the end time of the
utterance.

3. Each lattice arc is “inserted” into the TQL by attaching
its start/end nodes to the closest anchor nodes. To pre-
vent deleting arcs (or introducing self-loops) a lattice
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Fig. 1: (Caption appears in next column.)

Fig. 1: Steps in the generation of a TQL. The “x-axis” rep-
resents time and it illustrates the connection between TQL
nodes and times. (a) The default of inserting a lattice arc to
the TQL is to attach to the closest TQL nodes. (b) When
two or more lattice arcs with the same label (e.g., word) get
aligned at the same anchor nodes their posteriors are added
together. (c) The default operation of (a) can lead to missing
arcs, or self-loops (depending on how one would like to han-
dle cases of arcs whose endpoints are both aligned to the same
anchor node). (d) To prevent this from happening, we instead
align each of the endpoints of a lattice arc to at most two an-
chor nodes. This can lead to more than one arc in the TQL;
the original posterior is divided equally among the resulting
TQL arcs.

arc can give rise to multiple TQL arcs, each of which
attach to adjacent anchor nodes. The original posterior
is distributed accordingly (we have found that dividing
uniformly works well). See Figure 3 for an illustration
of the generation process.

We have also experimented with alternatives, such as: (i) at-
taching to more than two adjacent anchor nodes, (ii) divid-
ing the original posterior non-uniformly, but according to the
proximity to the anchor node. Since we did not observe any
significant gain from these alternatives, we decided to fol-
low the much simpler approach of dividing the posterior uni-
formly. We also varied the time duration between anchor
nodes, and we found that the best setting is 50ms. This is
the setting chosen for the results in this paper.

As expected, TQLs lie between lattices and c-nets in terms
of density. They are about 5–6 times larger than c-nets and 20
times smaller than lattices. So, they provide an interesting
alternative as far as storage and computation are concerned.

4. DATA

Here, we briefly describe the data used in the experiments of
this paper.

First, the languages considered were Assamese, Bengali,
Haitian Creole, Lao and Zulu2. These were the development
languages delivered during the second year of the IARPA Ba-
bel project.

The primary condition that the program participants were
evaluated on designated only 10 hours of transcribed audio for
acoustic and language model training. This is the condition
considered in this paper as well.

Results are reported on the unsequestered part (Eval1) of
the blind data used in the IARPA Babel official evaluation in
the Spring of 2014. It consists of approximately 5 hours of au-
dio per language. Tuning of the system combination weights

2The official codes for the final releases of the languages were IARPA-
babel102b (Assamese), IARPA-babel103b (Bengali), IARPA-babel201b
(Haitian Creole), IARPA-babel203b (Lao), IARPA-babel206b (Zulu).
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assamese bengali haitian lao zulu

IV OOV IV OOV IV OOV IV OOV IV OOV

method of [1]
lat/c-net 38.9 19.2 40.0 24.1 52.8 26.8 46.1 5.9 34.4 17.7

TQL/c-net 31.3 17.2 33.9 22.1 48.7 24.1 42.1 3.2 28.7 16.6

comb[1] 40.6 21.3 41.3 23.6 54.0 28.6 48.4 13.4 34.9 18.9

proxy

lat 40.4 20.7 40.8 23.6 53.2 23.4 47.6 9.0 33.3 14.1

c-net 37.4 16.8 38.4 20.6 49.2 15.5 44.6 6.1 33.4 12.1

TQL 40.7 22.7 40.5 23.7 53.4 22.5 47.9 12.4 34.0 13.3

combproxy 40.6 22.7 41.3 23.3 53.2 20.0 48.1 16.2 34.2 14.9

comb[1] + combproxy 40.2 26.1 42.1 29.3 54.9 31.8 48.6 17.6 35.8 21.3

syllable (method of [1]) 37.4 25.5 39.4 32.0 52.5 35.3 47.0 20.4 33.9 26.1

word + syllable 41.7 27.7 43.1 32.4 55.8 35.4 49.8 21.4 38.0 27.9

Table 1: ATWV results with various methods discussed in the paper. IV results are shown for reference. When using only
whole-word decodes, the best ATWV on each language (shown in bold) is obtained by combining the proxy and non-proxy
modes of search. Significantly better results (underlined) can be obtained when combining with syllabic decodes.

As Be Ha La Zu
24.2 26.2 21.8 11.5 45.3

Table 2: Percentage of OOV keywords per language.

and of the decision thresholds was done on a Dev set, consist-
ing of approximately 10 hours of audio per language.

ATWV is the primary performance measure used in the
IARPA Babel program. It is defined as one minus a linear
combination of the rates of misses and false alarms [19], av-
eraged over the keyword set.

The set of keywords on which we report performance con-
sists of the union of the development and evaluation keywords
used during the second year of the program. Their number
varies between 4.7K and 5.1K across languages. The per-
centage of OOV keywords per language is shown in Table 2.

5. EXPERIMENTAL RESULTS

In this section we present ATWV results obtained on the
Eval1 data set mentioned in Section 4. Table 1 shows ATWV
results with the keyword spotting pipelines of Section 2, as
well as their combination.

In the case of the method of [1], the lat/c-net rows corre-
spond to using c-nets extracted from regular lattices (word
c-nets for IV keywords with exact match, and phonetic c-
nets for OOV keywords with fuzzy match). Similarly for the
TQL/c-net rows.

For both methods ([1] and proxies), the “comb” rows cor-
respond to the combination of hit lists obtained by using all

available structures (lattices, cnets, TQLs).
For comparison, we also show the result when decoding

with syllables (“syllable (method of [1])” row) and in combi-
nation with whole-word decodes (“word+syllable” row).

There are several conclusions from these results: (i) On
average, when used with proxies, lattices and TQLs perform
better than c-nets, while TQLs perform slightly better than
lattices. (ii) On average, there is a significant 3% absolute
ATWV gain on the OOV keywords from doing the combina-
tion of all search methods considered in the case of whole-
word decoding. (iii) Syllables give better ATWVs for OOV
keywords than whole-words. (iv) Whole-words and syllables
combine well (a similar observation appeared in [3]).

6. CONCLUSIONS

We considered two techniques for dealing with OOV key-
words: (i) fuzzy-phonetic search using phonetic confusion
networks [1], and (ii) proxy-keyword search [2]. As we
demonstrate in this paper for the case of whole-word de-
coding, the combination of these two diverse techniques
improves the ATWV of OOV keywords by at least 3% on
average over the five development languages used in the sec-
ond year of the IARPA Babel program. We also introduced
a new lattice structure, the time-quantized lattice, which has
competitive performance, while being an order of magnitude
smaller than a regular lattice. Having a variety of connec-
tions in the outputs of ASR systems is crucial for detecting
different keyword types; system combination seems to be an
important system component for exploiting this variability.
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