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ABSTRACT

In this paper, we propose Time-Marked Word (TMW) lists as
a replacement for the lattices and Confusion Networks (CNs)
widely used as indexing vehicles for Spoken Term Detection
(STD). In a TMW list, candidates are simply tagged with pos-
terior probabilities and time information and stored as a large
list of words: the additional ordering present in a lattice or CN
is discarded. TMW lists compactly summarize a large ASR
search space. Representing a large search space is criticalfor
STD metrics such as ATWV that heavily penalize misses of
rare keywords. Comparisons on the OpenKWS 2014 Tamil
limited language pack task [1] show that the new TMW-based
indexing results in better performance while being faster and
having a smaller footprint.

Index Terms— keyword search, spoken term detection,
keyword spotting, audio indexing, confusion networks

1. INTRODUCTION

Finding a target term in an audio corpus is one of the fun-
damental problems in automatic speech processing. Given
the vast amount of existing spoken information, there is an
increasing need for small indices and fast search. Typi-
cally, state-of-the-art spoken term detection (STD) systems
search for terms in an index built from the output of an au-
tomatic speech recognition (ASR) system. The ASR out-
put representation is the 1-best hypothesis, and using it for
indexing results in good STD performance if the ASR sys-
tem has low word error rate. However, most state-of-the-
art STD systems, which often have to deal with degraded
inputs, benefit from using a richer ASR output representa-
tion. Lattices and confusion networks (CNs) [2] are two com-
monly used representations of multiple hypotheses from an
ASR system, and are frequently used for building STD in-
dices [3, 4, 5, 6, 7, 8, 9, 10, 11]. The drawback of the lattice
approach is the large disk space needed to store the index.
Confusion networks are much smaller, but the CN computa-
tion can be prohibitive for large lattices. We propose a re-
placement for lattices and confusion networks, - time-marked
word (TMW) lists. TMWs are a set of words with start and
end times and posterior scores. Unlike lattices and CNs,
which explicitly represent word ordering in their topologies,
TMWs lack such structure, encoding word ordering implicitly

in the time marks. The relationship between lattices or CNs
and TMWs is analogous to the relationship between a sen-
tence and its bag-of-words representation. To accommodate
the lack of explicit word-order information in the TMW lists,
we propose a new Weighted Finite State Transducer (WFST)
architecture for STD.

The organization of this paper is as follows: Section 2
describes the TMW lists and compares them with the stan-
dard representations, lattices and CNs. An overview of the
task, metric, and ASR system used for indexing is given in
Section 3. Section 4 and Section 5 describe the indexing and
search in the proposed architecture. Section 6 shows our ex-
periments and results and we conclude in Section 7.

2. ASR OUTPUT REPRESENTATIONS

Most speech recognition systems produce lattices or confu-
sion networks to be used for STD indexing. Lattices are par-
tially ordered networks of word hypotheses, with links in the
networks carrying word identity, time information, language
model (LM) and acoustic model (AM) scores. Posterior prob-
abilities for the links in a lattice can be computed from the
LM and AM scores using the Forward-Backward algorithm.
Confusion networks have a linear structure, representing the
competing word hypotheses and their posterior probabilities
in consecutive time intervals (confusion bins). CNs are pro-
duced from lattices through a 2-step process: (1)Intra-word
clustering, in which the lattice arcs which have the same
word label, start and end time are merged and their posteri-
ors summed up, and (2)Inter-word clustering, in which all
the lattice arcs are clustered until the partial order becomes
a total order, leading to the linear structure. CNs are orders
of magnitude smaller than lattices, but they take extra time
to compute. Theinter-word clustering step accounts for 99%
of the computation time. To avoid this time-consuming step,
we propose the time-marked word (TMW) list, which is the
output of theIntra-word clustering step: an enumeration of
word labels, start and end times, and posterior probabilities,
(w, s, e, p). Silence, hesitations and other filler words are not
written into this list. A lattice is computed in memory, but
only the TMW list is produced on disk. If we want to reduce
the size of the TMW lists further, we can relax the exact time
match constraint to allow for arcs with large overlap to merge
as well. In this paper we report results for exact match only.

5331978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



3. DATA AND ASR SYSTEM DESCRIPTION

We conducted our experiments in the context of the IARPA
Babel program [12], which focuses on spoken term detec-
tion for low-resource languages. The STD task is defined by
NIST in the OpenKWS14 Evaluation Plan [1]. We chose the
limited language pack track (LP) of the program, in which
only 20 hours of audio, (10 hours of transcribed data) is used
for building ASR models and lexicons, making it more in-
teresting for out-of-vocabulary (OOV) keyword search. In
this paper, we focus on the Tamil language, which was the
OpenKWS 2014 evaluation task. The limited language pack
includes a 20-hour development set (DEV). For these exper-
iments we used two keyword sets: IBM-1, containing 1721
in-vocabulary (IV) queries and 654 OOV queries, and IBM-2,
containing 1978 IV queries and 617 OOV queries, generated
by IBM [13] and supplied to all OpenKWS participants.

The metric used for the Babel program is Term-Weighted
Value (TWV), which was first used in the NIST 2006 STD
Evaluation [14]. We report keyword search performance in
terms of maximum Term-Weighted Value (MTWV) which is
the best TWV for all values of the decision threshold. We also
report Optimal TWV (OTWV) which gives an upper-bound
of the performance under perfect keyword-specific thresh-
olding and Supremum TWV (STWV) which gives an upper
bound of the performance assuming perfect detection scores
and thresholding [1].

The acoustic model used in these experiments is a col-
lection of three DNNs which differ in the number of out-
put states (1000, 2000, 3000). The DNNs take 9 consecu-
tive frames as input where each frame is a concatenation of
a 40-dimensional FMLLR vector [15] and a 7-dimensional
fundamental frequency variation (FFV) vector [16, 17]. Each
DNN has 5 hidden layers with 1024 sigmoid units. During
decoding, the output scores of the DNNs are combined at
the frame level with equal weights. The training of the nets
comprises (1) layer-wise discriminative pre-training using the
cross-entropy criterion, (2) stochastic gradient training using
back-propagation and the cross-entropy criterion, and (3)se-
quence discriminative training using stochastic gradientand
the state-level minimum Bayes risk criterion [18]. The dic-
tionary has 14.1K words and 21.3K pronunciations. The lan-
guage model (LM) is a trigram LM with modified Kneser-Ney
smoothing trained only on the acoustic transcripts.

The lattices, CNs and TMW lists are produced using a
dynamic decoder [19]. The word error rates for the 1-best hy-
potheses from the lattices and confusion networks are 73.9%
and 73.1%, respectively. For simplicity, we present results
for this acoustic model only, which was the IBM model with
the best ATWV performance in the OpenKWS14 evaluation.
Similar improvements are obtained for other acoustic models.

4. INDEXING

In this section we describe the order-free method we propose
for indexing TMW lists. An index containing all the infor-
mation needed for keyword search (audio file identity, start
time, end time, and word label) is constructed from a TMW
list using the following steps.

1. For each utterance,i, we create a word loop WFST,
which hasSi as the start node,Ei as the end node, and
arcs fromSi toEi for each item(w, s, e, p) in the TWM
list. These arcs havew as the input label, (s,e) as the
output label and−log(p) as the cost.Ei is connected
to Si by a zero-cost epsilon arc, thus creating a word
loop.

2. The final single index is obtained by creating a new start
node,S, that is connected to eachSi by zero-cost arcs
with input label epsilon and output labeli (or audio file
id), and a new end node,E, that is connected to each
Ei by zero-cost epsilon-arcs.

Figure 1 shows the TMW-based index. The set of keywords
that can be retrieved by this index is larger than the one that
can be retrieved by a lattice index due to the full connectivity.
A multi-word keyword might not be found in a lattice index
if there is no path connecting the word components in the
lattice. This can be a problem especially for large keywords.
In the case of a CN-based index, which is already a much
more connected structure, the TMW-based index allows for
new sequences of words which might be missed in a CN due
to anInter-word alignment error.
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Fig. 1. TWM-based index.

Note that even though our intention is to have the ASR
system output TMW lists instead of lattices and CNs, in case
those alternate outputs exist, they can be easily convertedto
TMW lists and be indexed in a similar fashion. We will re-
fer to those as Lattice-TMW and CN-TMW indexing in Sec-
tion 6.
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5. SEARCH

Each query is converted into a word automaton to search
the index described in Section 4. In-vocabulary (IV) query
automata are directly composed with the word index trans-
ducer. For OOV search, either (1) queries are converted to
IV queries (proxies) using a phone confusability (P2P) trans-
ducer [20, 21, 22] and then composed with the word index,
or (2) the index is converted to phone level by replacing all
words with their pronunciations and is then searched via com-
position with phone automata. A phone automaton is gener-
ated by (1) converting an OOV word automaton to a phone
automaton P using the lexicon, (2) composing P with P2P,
and (3) extractingN -best paths. Both methods produce iden-
tical results, with the better choice depending on memory and
computational constraints, as well as on the size of the vo-
cabulary. The advantage of the proxy method comes from a
smaller index size and faster search. But, for large vocabulary
sizes, the conversion of OOV queries to IV proxies is compu-
tationally and memory intensive, in which case the phonetic
method is preferred. Note that for many tasks the IV search
can also benefit from expansion using a P2P transducer, in
which case the indexing and search pipeline for all the queries
will be the same, and only the degree of phonetic expansion
(N -best) will differ (less expansion for IV queries).

Regardless of the type of composition, word-based or
phone-based, the result of the composition, after projecting
on the output label, is a list of hits for each query and the
corresponding score. A hit contains the audio file id, as
well as a sequence of start and end time pairs(si, ei) cor-
responding to the word components of a multi-word query
“audio file id” (s1, e1) (s2, e2) ... (sn, en). In contrast to the
previous lattice and CN-based WFST approaches in which the
start and end time pairs were ordered due to the structure of
the index, when employing TMW lists we use one more step:
all the hits containing consecutive time pairs that are notor-
dered are eliminated. Two time pairs(si, ei) and(si+1, ei+1)
are ordered ifsi < si+1 and si+1 − ei < thresh, where
thresh is empirically determined. In other words, the start
times have to be sorted in time, and the putative locations of
the word components should not be far from each other. Note
thatsi+1 − ei could be negative if the two time pairs overlap.
The final posting list consists of the surviving hits, which have
start times1 and end timeen. In case there are two overlap-
ping hits for a keyword, we keep only the hit with the maxi-
mum score. For each keyword, the scores below a threshold
are normalized as in [20], while high scores are kept intact.

6. EXPERIMENTS AND RESULTS

The OpenFST Library [23] is used for both indexing and
search. There are many methods [24, 25, 26] for creating the
phone confusability transducer. For the OpenKWS evaluation
we used a simple method that compares the Viterbi alignment

System MTWV OTWV STWV
Lattice STD 0.1503 0.2723 0.4625
CN STD 0.1518 0.2810 0.4912
TMW STD 0.1549 0.2883 0.5116

Table 1. Comparison of STD performance.

System Index Size Time to produce
Lattice 21G 82 hours
CN 110M 124 hours
TMW 295M 80 hours

Table 2. Comparison of size and computational times.

of the training data transcripts to the decoded output to ac-
cumulate state-level confusions which are then converted to
phone-level confusions.

As a baseline for the TMW based STD we use the state-
of-the-art lattice and CN WFST STD architectures we suc-
cessfully deployed in both the DARPA RATS and IARPA Ba-
bel evaluations [4, 24, 25, 27, 20]. In the lattice architecture
a word index built from lattices [4] is used for IV search and
a phone index is used for OOV search, after the OOV queries
are expanded using the P2P transducer. In the CN approach, a
word index built from CNs [20] is used for both IV and OOV
search. All queries are mapped to IV proxies after expansion
with the P2P transducer. THe same confusability transducer
is used for all approaches, and the same degree of expansion
for IV (N -best=2000) and OOV queries (N -best=20000). Ta-
ble 1 and Table 2 show the performance, index size and com-
putational time for TMW lists, CNs, and lattices produced
by the acoustic model described in Section 3. It can be seen
that TMW STD has the best MTWV, OTWV, and STWV, re-
quires the least amount of time for index generation, and pro-
duces a smaller index than lattice STD. While CN STD has
an even smaller index size, if we increase decoding beams for
CN STD to match the TMW STD index size, the CN STD
performance is still worse (MTWV=0.1525) and the time to
produce the CN STD index increased by 20%.

We also investigate the difference between order-free in-
dexing and structured indexing for a given ASR output type.
Order-free indexing based on lattices (lattice-TMW) is simply
a matter of converting lattices to TMW lists and then applying
TMW indexing and search. This is identical to TMW STD,
except that the lattices have been written to disk. For order-
free indexing based on CNs (CN-TMW), we create TMW
lists by extracting the words with time information and their
posterior probabilities from CNs, and then apply TMW in-
dexing and search. The comparison between lattice STD and
lattice-TMW STD is made in Table 1, while the comparison
between CN STD and CN-TMW STD is made in Table 3.
Even if we use CNs as an intermediate representation, order-
free indexing improves STD performance.
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System MTWV OTWV STWV
CN STD 0.1518 0.2810 0.4912
CN-TMW STD 0.1525 0.2993 0.5001

Table 3. Comparison of CN indexing methods

System MTWV Index Size
Lattice STD 0.1553 149G
TMW STD 0.1602 1G

Table 4. Comparison for larger ASR decoding beams

The STD results above are obtained using the same ASR
decoding parameters, namely the ones used in the evaluation.
For the ATWV metric it is very important that rare words are
not missed; therefore, better performance can be achieved if
the index is rich enough to contain instances of those words,
even if the scores are low. If the only hit for a word has a
very low score, after normalization this score becomes 1, and
will survive any thresholding. Given that TMW lists are much
smaller than lattices and faster to produce than CNs, we can
afford to increase the decoding beams and thus prune fewer
hypotheses. As seen in Table 4, with an index that is 150
times smaller, we obtained better performance.

In all the above experiments, indexing is based on word
ASR decoding; however, our best evaluation system used
three indexes: (1) word-based, (2) word-based but with no
language model scores, and (3) morph-based. For each query
we search in the three indexes simultaneously and merge the
results. Fig 2 shows the architecture of an index that can be
used for this parallel search. The labelsT1,T2,T3 identify the
sub-index that produces a given hit in the resulting posting
list. These identifiers are needed due to the different merging
strategies used in case of overlapping hits: for hits coming
from the same sub-index we keep only the maximum scor-
ing one, while for hits coming from different sub-indexes we
add up the scores. As seen in Table 5, parallel indexing and
search results in 40% relative improvement in ATWV, and this
improvement holds when TMW STD is used instead of CN
STD. We are comparing only against CN STD because this
was the system that was submitted in the OpenKWS evalua-
tion. TMW STD is especially beneficial for parallel indexing
and search. Given the complex structure of the parallel index,
it is important to have small sub-indexes which can also be
produced quickly.

7. CONCLUSION AND FUTURE WORK

We propose time-marked word (TMW) lists as a replacement
for lattices and CNs, as input for STD indexing. TMW lists
are much smaller than lattices, and faster to compute than
CNs. To accomodate the lack of explicit word-order infor-
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Fig. 2. Parallel index.

System MTWV
CN STD 0.2194
TMW STD 0.2210

Table 5. Comparison of parallel STD architecture for CN
STD and TMW STD

mation in the TMW lists, we propose a new word-loop FST
architecture for STD. The burden of insuring that the words
in a multi-word query are correctly ordered in an STD hit is
transferred from the indexing step to the search step. While
previously the index encoded this information, causing the
index to be large (lattices) or slower to produce (CNs), the
current approach simply imposes an efficient time order test
during search. We also show that the proposed STD architec-
ture can be applied to lattices and CNs by converting them to
TMW lists. In this work we create TMW lists after creating
a lattice in memory, which allows us to compute word poste-
rior probabilities. As future work, we are investigating faster
methods for computing reliable scores for the time-marked
words to be used for STD.
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