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ABSTRACT

In this paper, we introduce a document-specific context probabilistic
latent semantic analysis (DCPLSA) model for speech recognition.
This is an extension of a CPLSA model [1] where the probability
of word is conditioned only on topics. The CPLSA model uses the
bigram counts that are the number of appearances of the bigrams in
the corpus. These counts are the sum of the bigram counts in dif-
ferent documents where they could appear to describe different top-
ics. We encounter this problem in the CPLSA model and introduce
the document-specific CPLSA model (DCPLSA) where the prob-
ability of a word is conditioned on both topic and document. We
carried out experiments on a continuous speech recognition (CSR)
task using the Wall Street Journal (WSJ) corpus and have seen that
the proposed DCPLSA approach yields significant reduction in both
perplexity and word error rate (WER) measurements over the other
approaches used in the literature.

Index Terms— Topic models, bigram PLSA models, speech
recognition, context-based PLSA language model, statistical lan-
guage model

1. INTRODUCTION

Statistical n-gram language models (LMs) have been used success-
fully in speech recognition and many other applications. They cap-
ture only the short-range information in the language and suffer from
a shortage of long-range information, which limits performance. To
handle the long-range information, many approaches have been tried
such as cache-based LMs [2] and trigger-based LM adaptation [3].
Recently, latent topic analysis has been used broadly to compen-
sate for the weaknesses of n-gram models. Several techniques such
as Latent Semantic Analysis (LSA) [4, 5], PLSA [6, 7], and Latent
Dirichlet Allocation (LDA) [8] have been studied to extract the latent
semantic information (topics) from a training corpus. These meth-
ods have been used successfully for speech recognition [5, 7, 9, 10,
11, 12, 13, 14]. A bigram LDA topic model has been recently inves-
tigated [15], where the word probabilities are conditioned on their
preceding history context and the topic probabilities are conditioned
on the documents. A similar model, but in the PLSA framework,
called the bigram PLSA model was introduced recently [16]. An up-
dated bigram PLSA model (UBPLSA) was proposed in [17] where
the topic is further conditioned on the bigram history context to the
original bigram PLSA model [16]. In the UBPLSA model, only the
seen bigram probabilities are trained. This approach is not practical
as it assigns zero probability to the unseen bigrams in the training
and yields incorrect topic probabilities of the unseen test document.
To overcome the limitation of the UBPLSA model, a context-based
PLSA (CPLSA) model [1] was introduced.

In this paper, we extend our previous work [1] and propose a new
document-specific context PLSA (DCPLSA) model. The CPLSA
model [1] uses the sum of bigrams in all documents to compute the
word probabilities for topics. However, words in the bigrams may
describe different topics in different documents. For example, the
bigram White House can occur in a document where it describes a
real estate topic. Also, it can occur in another document that de-
scribes a political topic. Therefore, the probability of word given
only the topics may not give the appropriate results. This motivates
us to introduce the DCPLSA model where the word probabilities are
trained by conditioning on the topics and the documents. We have
seen significant improvement using perplexity and word error rate
(WER) measurement. However, the DCPLSA model requires more
complexity and memory requirement than the CPLSA model.

The rest of the paper is organized as follows. Section 2 describes
the PLSA, the UBPLSA, and the CPLSA models. The proposed
DCPLSA model is described in section 3. The calculation of the
n-gram probabilities of the unseen test document is illustrated in
section 4. A comparison of the UBPLSA, CPLSA and DCPLSA
models is studied in section 5. In section 6, the time complexity and
memory requirements of the UBPLSA, CPLSA and DCPLSA mod-
els are analysed. The experimental details are described in section 7.
Finally the conclusions are explained in section 8.

2. REVIEW OF PLSA, UBPLSA, AND CPLSA MODELS

2.1. PLSA Model

The PLSA model [7] extracts semantic information from a corpus
in a probabilistic framework. It uses an unobserved topic variable
with each observation, i.e., with each occurrence of a word in a doc-
ument. It is assumed that the document and the word are indepen-
dent conditioned on the state of the latent topic variable. It models
each word in a document as a sample from a mixture model, where
the mixture models can be viewed as representations of topic distri-
butions. Therefore, a document is generated as a mixture of topic
distributions and reduced to a fixed set of topics. Each topic is a
distribution over words. The model [7] can be described in the fol-
lowing procedure. First a document dl (l = 1, 2, . . . , N) is selected
with probability P (dl). A topic tk (k = 1, 2, . . . ,K) is then chosen
with probability P (tk|dl), and finally a word wj (j = 1, 2, . . . ,M)
is generated with probability P (wj |tk). The probability of word wj

given a document dl can be estimated as:

P (wj |dl) =
K∑

k=1

P (wj |tk)P (tk|dl). (1)

The model parameters P (wj |tk) and P (tk|dl) are computed by us-
ing the expectation maximization (EM) algorithm [7].
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2.2. UBPLSA Model

The PLSA model yields unigram models for topics. To improve the
performance, a bigram PLSA model [16] was introduced where the
bigram probabilities for topics were trained instead of unigrams in
the PLSA model. Before describing the UBPLSA model, the previ-
ous bigram PLSA model is briefly explained. Instead of P (wj |tk)
in Equation 1, the bigram PLSA model uses P (wj |wi, tk) in com-
puting the probability of word wj given the bigram history wi and
the document dl:

P (wj |wi, dl) =

K∑
k=1

P (wj |wi, tk)P (tk|dl). (2)

The model parameters are computed using the EM procedure [16].
The UBPLSA model was recently proposed in [17], which out-

performs the previous bigram PLSA model [16]. Here, the topic
probability is further conditioned on the bigram history context. It
can model the topic probability for the document given a context,
using the word co-occurrences in the document. In this model, the
probability of the word wj given the document dl and the word his-
tory wi is computed as:

P (wj |wi, dl) =

K∑
k=1

P (wj |wi, tk)P (tk|wi, dl). (3)

The model parameters are computed using the EM procedure [17].

2.3. CPLSA Model

The problem of the UBPLSA model is that it uses only seen bigrams
for training. Therefore, it cannot compute all the possible bigram
probabilities in the training phase. It results in incorrect topic proba-
bilities of the test document. This is because the model cannot com-
pute topic probabilities for some history contexts that are present
both in the training and test sets. To overcome the limitations of the
UBPLSA model, the CPLSA model was introduced [1].

The CPLSA model is similar to the original PLSA model ex-
cept the topic is further conditioned on the history context as is the
UBPLSA model. Using this model, we can compute the bigram
probability using the unigram probabilities of topics as:

P (wj |wi, dl) =
K∑

k=1

P (wj |tk)P (tk|wi, dl). (4)

The parameters of the model are computed as:
E-step:

P (tk|wi, wj , dl) =
P (wj |tk)P (tk|wi, dl)∑
k′ P (wj |tk′)P (tk′ |wi, dl)

, (5)

M-step:

P (wj |tk) =
∑

i′
∑

l′ n(wi′ , wj , dl′)P (tk|wi′ , wj , dl′)∑
j′
∑

i′
∑

l′ n(wi′ , wj′ , dl′)P (tk|wi′ , wj′ , dl′)
,

(6)

P (tk|wi, dl) =

∑
j′ n(wi, wj′ , dl)P (tk|wi, wj′ , dl)∑

k′
∑

j′ n(wi, wj′ , dl)P (tk′ |wi, wj′ , dl)
. (7)

From Equations 5 and 7, we see that the model can compute all the
possible bigram probabilities of the seen history context in the train-
ing set. Therefore, the model can overcome the problem of com-
puting topic probabilities of the test document using the UBPLSA
model, which causes the problem in the computation of the bigram
probabilities of the test document.

3. PROPOSED DCPLSA MODEL

In the CPLSA model, the word probabilities for topics are com-
puted using the sum of the bigram events in all training documents
where the words may appear to describe different topics in different
documents. Therefore, the word probabilities given only the top-
ics will not give proper results. In this section, we describe a new
topic model where the document-specific word probabilities for top-
ics are trained. The DCPLSA model is similar to the original CPLSA
model except that the document-based word probabilities for topics
are computed instead of the global word probabilities for topics in
the CPLSA model. To better understand the model, the matrix de-
composition of the DCPLSA model is described in Figure 1. Using
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Fig. 1. Matrix decomposition of the DCPLSA model

this model, we can compute the bigram probability for a document
as:

P (wj |wi, dl) =

K∑
k=1

P (wj |tk, dl)p(tk|wi, dl). (8)

The parameters of the model are computed as:
E-step:

P (tk|wi, wj , dl) =
P (wj |tk, dl)P (tk|wi, dl)∑
k′ P (wj |tk′ , dl)P (tk′ |wi, dl)

, (9)

M-step:

P (wj |tk, dl) =
∑

i′ n(wi′ , wj , dl)P (tk|wi′ , wj , dl)∑
j′
∑

i′ n(wi′ , wj′ , dl)P (tk|wi′ , wj′ , dl)
,

(10)

P (tk|wi, dl) =

∑
j′ n(wi, wj′ , dl)P (tk|wi, wj′ , dl)∑

k′
∑

j′ n(wi, wj′ , dl)P (tk′ |wi, wj′ , dl)
. (11)

4. N-GRAM PROBABILITIES OF THE TEST DOCUMENT

We used the folding-in procedure [7] to compute the n-gram prob-
abilities of the test document dt using the above models. For the
PLSA model, we keep the unigram probabilities for topics P (wj |tk)
fixed and used them to compute the topic probabilities P (tk|dt)
using EM iterations and then compute the unigram probabilities
P (wj |dt) using Equation 1. In the UBPLSA model, the bigram
probabilities P (wj |wi, tk) remain unchanged while computing the
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topic probabilities P (tk|wi, dt) using EM iterations. The bigram
probabilities P (wj |wi, dt) are then computed using Equation 3.
However, the topic probabilities P (tk|wi, dt) for some histories wi

were assigned zeros, as the training model gives zero probabilities
to the unseen bigrams in the training model [17]. Therefore, some
bigrams of the test document with history context wi were assigned
zero probabilities. The problem is solved by the CPLSA model,
which is able to assign probabilities to all the bigrams of the seen
history context in the training set. In the CPLSA model, P (wj |tk)
remains fixed in the EM iterations of the test phase in computing
P (tk|wi, dt). Finally, the bigram probabilities P (wj |wi, dt) are
computed using Equation 4.

For the DCPLSA, we have word probabilities P (wj |tk, dl)
for topics of each training document dl. During testing, we kept
P (wj |tk, dl) unchanged and used them to compute P (tk|wi, dt, dl)
for the test document dt.

The seen bigram probabilities of the test document dt are then
computed as:

P (wj |wi, dt) =

N∑
l=1

P (wj |wi, dt, dl)P (dl|wi)

=

N∑
l=1

(

K∑
k=1

P (wj |tk, dl)P (tk|wi, dt, dl))×

C(wi, dl)∑N
l=1 C(wi, dl)

(12)

where C(wi, dl) is the count of wi in the training document dl.
However, for some seen bigrams of the test document, the words
of the bigram cannot be found together in any of the training docu-
ments. Their probabilities are computed as:

P (wj |wi, dt) =

N∑
l=1

(

K∑
k=1

P (wj |tk, dl)P (tk|wi, dt, dl))P (dl)

(13)
where P (dl) = 1/N .

The zero probabilities of the obtained matrix P (wj |wi, dt) are
then computed by using back-off smoothing. To capture the local
lexical regularities, the model is then interpolated with a back-off
trigram background model.

5. COMPARISON OF UBPLSA, CPLSA & DCPLSA
MODELS

The UBPLSA, CPLSA and DCPLSA models are differentiated by
the word probabilities. The bigram probabilities for topics, the uni-
gram probabilities for topics, and the unigram probabilties given the
topics and documents are trained, for the UBPLSA, the CPLSA and
the DCPLSA models respectively. The CPLSA model requires less
memory and complexity than the other models. The memory and
complexity requirements for the DCPLSA model are less than the
UBPLSA model if the number of seen bigrams is higher than the
product of the number of vocabulary words and the documents. As
the UBPLSA model and the CPLSA model, the proposed DCPLSA
model can also be extended to the n-gram (n > 2) case with increas-
ing complexity and memory space requirements.

6. COMPLEXITY ANALYSIS OF THE UBPLSA, CPLSA
AND DCPLSA MODELS

The numbers of free parameters for the UBPLSA, CPLSA and DC-
PLSA models are M(M−1)K+(K−1)MN , (M−1)K+(K−
1)MN , and (M − 1)KN + (K − 1)MN respectively. Here, M ,
K, and N represent the number of words, the number of topics and
the number of documents, respectively. From the above discussion,
we note that the CPLSA model needs fewer parameters, hence re-
quires smaller memory space than the other models. The DCPLSA
model requires fewer parameters than the UBPLSA model as long as
the number of documents N is less than the number of vocabulary
words M .

In the E-step of the EM algorithm, we have to compute
P (tk|wi, wj , dl) for all i, j, k, l. Therefore, the time complexity
of the UBPLSA model [17], the CPLSA model [1] and the DC-
PLSA model is O(M2NK). The time complexities for the M-step
are O(KNB), O(MNK) and O(MN2K) for the UBPLSA, the
CPLSA and the proposed DCPLSA models respectively. Here, B
is the average number of word pairs in the training documents [17].
The size of B is obviously greater than the size of M . Therefore,
the CPLSA model also needs less training time than the other mod-
els. The DCPLSA model can require less training time than the
UBPLSA model as long as M ×N is less than B.

7. EXPERIMENTS

7.1. Data and Experimental Setup

We randomly selected 500 documents from the ’87-89 WSJ cor-
pus [18] for training the PLSA, the UBPLSA, the CPLSA and the
DCPLSA models. The total number of words in the documents is
224,995. We used the 5K non-verbalized punctuation closed vocab-
ulary from which we removed the MIT stop word list [19] and the in-
frequent words that occur only once in the training documents. After
these removals, the total number of vocabulary is 2628. We could not
consider more training documents due to the higher computational
cost and huge memory requirements for the UBPLSA model [17]
and the DCPLSA models. However, trigram models give better re-
sults than the bigram models when more training data are consid-
ered. As a small amount of training data can be considered in the
UBPLSA and DCPLSA models, the reliability of trigrams decreases
more severely than that of bigrams and the bigrams are more robust
than the trigrams [20]. For these reasons, we train only the bigram
UBPLSA, CPLSA and DCPLSA models. Also, we used the same
number of documents for the PLSA and CPLSA models for valid
comparison. To capture the local lexical regularity, the topic mod-
els are interpolated (defined as + in the tables and figures) with a
back-off trigram background (B) model. The trigram background
model is trained on the ’87-89 WSJ corpus using the back-off ver-
sion of the Witten-Bell smoothing; 5K non-verbalized punctuation
closed vocabulary and the cutoffs 1 and 3 on the bigram and trigram
counts respectively are incorporated. The interpolation weights are
computed by optimizing on the held-out data. We used the acoustic
model from [21] in our experiments. The acoustic model is trained
by using all WSJ and TIMIT [22] training data, the 40 phones set
of the CMU dictionary [23], approximately 10000 tied-states, 32
gaussians per state and 64 gaussians per silence state. The acoustic
waveforms are parameterized into a 39-dimensional feature vector
consisting of 12 cepstral coefficients plus the 0th cepstral, delta and
delta delta coefficients, normalized using cepstral mean subtraction
(MFCC0−D−A−Z). The experiments are evaluated on the evalu-
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ation test, which is a total of 330 test utterances from the Novem-
ber 1992 ARPA CSR benchmark test data for vocabularies of 5K
words [24, 25]. The results are described by using the perplexity
and WER measurements.

7.2. Experimental Results

We tested the above LM approaches for various sizes of topics. We
performed the experiments five times and the results are averaged.
The perplexity results are described in Table 1.

Table 1. Perplexity results of the topic models
Language Model 20 Topics 40 Topics
Background (B) 69.0 69.0
B+PLSA 62.0 61.9
B+UBPLSA 59.0 58.7
B+CPLSA 57.5 55.8
B+DCPLSA 55.5 53.8

From Table 1, we can note that the perplexities are decreased
with increasing topic size. The B+UBPLSA model outperforms the
B+PLSA [7] models and the B+CPLSA model shows better results
than the B+PLSA [7] and the B+UBPLSA [17] models respectively.
The proposed B+DCPLSA model outperforms the B+PLSA [7], the
B+UBPLSA [17] and the B+CPLSA [1] models respectively. The
B+DCPLSA model yields perplexity reduction of about 19.6% (69.0
to 55.5), 10.5% (62.0 to 55.5), 5.9% (59.0 to 55.5) and 3.5% (57.5
to 55.5) for 20 topics and about 22.0% (69.0 to 53.8), 13.1% (61.9 to
53.8), 8.3% (58.7 to 53.8) and 3.6% (55.8 to 53.8) for 40 topics, over
the background (B) model, B+PLSA model [7], the B+UBPLSA
[17] and the B+CPLSA [1] approaches respectively.

We performed the paired t-test on the perplexity results of the
above models with a significance level of 0.01. The p-values for
different topic sizes are described in Table 2. From Table 2, we

Table 2. p-values obtained from the paired t test on the perplexity
results

Language Model 20 Topics 40 Topics
B+UBPLSA
and B+CPLSA 6.0E-11 2.8E-14
B+CPLSA
and B+DCPLSA 6.5E-12 3.1E-13

can note that all p-values are less than the significance level of
0.01. Therefore, the perplexity improvements of the proposed DC-
PLSA model over the CPLSA model [1] are statistically significant.
Also, the CPLSA model [1] is statistically better than the UBPLSA
model [17].

We evaluated the WER experiments using lattice rescoring. In
the first pass, we used the back-off trigram background language
model for lattice generation. In the second pass, we applied the inter-
polated form of the PLSA, UBPLSA, CPLSA and DCPLSA models
for lattice rescoring. The experimental results are explained in Fig-
ure 2. From Figure 2, we can note that the proposed DCPLSA model
yields significant WER reductions of about 25% (4.0% to 3.0%),
14.3% (3.5% to 3.0%), 9.1% (3.3% to 3%) and 6.25% (3.2% to
3.0%) for 20 topics and about 27.5% (4.0% to 2.9%), 17.1% (3.5%

to 2.9%), 14.7% (3.4% to 2.9%) and 9.4% (3.2% to 2.9%) for 40
topics, over the background model, PLSA model [7], the UBPLSA
[17] and the CPLSA [1] approaches respectively.

Topic 20 Topic 40
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

4 4

3.5 3.5
3.3 3.4

3.2 3.2
3 2.9

Background (B) B+PLSA B+UBPLSA B+CPLSA B+DCPLSA

Fig. 2. WER results for different topic sizes

We also performed a paired t test on the WER results for the
interpolated models with a significance level of 0.01. The p-values
of the test are explained in Table 3. From Table 3, we can see that

Table 3. p-values obtained from the paired t test on the WER results

Language Model 20 Topics 40 Topics
B+UBPLSA
and B+CPLSA 4.7E-06 9.3E-06
B+CPLSA
and B+DCPLSA 6.9E-06 1.5E-07

the p-values are smaller than the significance level of 0.01. There-
fore, the WER improvements of the proposed DCPLSA model are
statistically significant.

8. CONCLUSIONS

In this paper, we introduce a new document-specific CPLSA (DC-
PLSA) language model for speech recognition. This is an extended
work of the CPLSA [1] model, which was investigated to overcome
the limitations of an UBPLSA [17] model. As the UBPLSA model
assigns probabilities to the seen bigrams only in the training phase,
the model gives zero topic probabilities for some history context of
the test document that are seen in the training set. Therefore, some
of the bigram probabilities of the test document cannot be computed
using the training model, which is not practical. The CPLSA model
can compute all the possible bigram probabilities of the seen his-
tory context in the training set. It helps to find the topic weights of
the unseen test documents correctly and hence gives the correct bi-
gram probabilities to the test document. However, the CPLSA model
trains the unigram probabilities for topics by using the sum of bigram
events in all documents where the words may appear to describe dif-
ferent topics in different documents. This may yield inappropriate
word probabilities for topics. We identify this problem in the CPLSA
model and propose the DCPLSA model where document-wise uni-
gram probabilities for topics are trained and have seen significant
perplexity and WER reductions using the WSJ corpus over the other
approaches.
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