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ABSTRACT

Many recent competitive state-of-the-art solutions for under-
standing of speech data have in common to be probabilistic
and to rely on machine learning algorithms to train their mod-
els from large amount of data. The difficulty remains in the
cost and time of collecting and annotating such data, but also
to update the existing models to new conditions, tasks and/or
languages. In the present work an approach based on a zero-
shot learning method using word embeddings for spoken lan-
guage understanding is investigated. This approach requires
no dedicated data. Large amounts of un-annotated and un-
structured found data are used to learn a continuous space
vector representation of words, based on neural network ar-
chitectures. Only the ontological description of the target do-
main and the generic word embedding features are then re-
quired to derive the model used for decoding. In this paper,
we extend this baseline with an online adaptative strategy al-
lowing to refine progressively the initial model with only a
light and adjustable supervision. We show that this proposi-
tion can significantly improve the performance of the spoken
language understanding module on the second Dialog State
Tracking Challenge (DSTC2) datasets.

Index Terms— Spoken language understanding, word
embedding, zero-shot learning, out-of-domain training data,
online adaptation.

1. INTRODUCTION

In dialogue systems, the Spoken Language Understanding
(SLU) module extracts a list of semantic concept hypothe-
ses from an input sentence transcription of the user’s query.
Currently, the state-of-the-art SLU systems are based on prob-
abilistic approaches trained on a large amount of data with
various machine learning methods (see for instance [1, 2, 3]
etc.). Despite their good performance, the difficulty remains
in the cost and time of collecting and annotating such required
data and also in the updating of the existing models to new
conditions, tasks and/or languages. Therefore, some research
works have focused on the use of lightly supervised [4, 5, 6],
or unsupervised [7, 8, 9] training approaches to cope with the
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lack of annotated resources by either exploiting the semantic
web for mining additional training data and enriching classifi-
cation features or proposing unsupervised annotation process
on a closed-domain corpus. Always with the objective of min-
imising the cost of data collection, some other works focused
on porting a system across language and domain [10, 11, 12].
Active learning has been also widely studied as a way to re-
duce the time required for corpus annotation and verification
in online settings [13, 14, 15].

In this work, a zero-shot learning technique is employed
to deal with the SLU task. The proposed approach rests on
a word embedding semantic modelisation which alleviates
parts of the requirement in terms of annotated and in-context
data by exploiting its internal generalisation properties [16].
Indeed, only the ontological description of the target domain
and generic word embedding features (learned from freely
available and general purpose data) are required to obtain the
model used at decoding time. Recently, a similar approach
has been proposed in [17] for Semantic Utterance Classifi-
cation (SUC). However, our proposition is different with re-
spect to: how the semantic space is modelled, no in-context
domain data required, and what is the task at hand, seman-
tic annotation of a sentence (SLU) and not whole utterance
classification (SUC). However, such approach is dependent
on the quality of both the given ontological description and
the word-embedding space. To address this limitation, we
propose to add an online adaptative strategy, introducing a
light supervision, in order to refine the initial knowledge base
definition and to better exploit the considered embedding in
an incremental fashion. This proposition joins recent works
addressing the SLU adaptation issue. For instance, in [18]
an instance-based approach for online adaptation of seman-
tic models is presented, while [19] proposes a supervised ap-
proach for updating the SLU models with a limited supervi-
sion given by users calling the system. We show that our pro-
posed online adaptative technique improves the performance
reached by the zero-shot learning method in several configu-
rations on the Dialog State Tracking (DSTC2) testbed [20].

In Section 2 of this paper we describe the considered SLU
task. Section 3 presents the proposed adaptative zero-shot
learning approach. Our experimental study is presented in
Section 4 followed by some concluding remarks.
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2. SPOKEN LANGUAGE UNDERSTANDING

The aim of the SLU module is to extract from a user utter-
ance of n words, W = w1, w2, ..., wn, a valid sequence of m
conceptsC = c1, c2, ..., cm, where ci is formally described as
a slot-value pair such as food=Italian or destination=Boston.
However, in this paper, the semantics follows the standards
defined during the challenges embodied in the DSTC2 and
DSTC3 corpora [20] wherein the extracted sequence of con-
cepts is expressed as a sequence of Dialogue Acts (DAs) of
the form acttype(slot=value).

Thus, the considered SLU task is a sequential tagging
problem where possible tags are all task-specific acttype(
slot=value) combinations based on a pre-defined inven-
tory of acttypes, slots and associated values.

The acttype are task-independent and can be di-
vided into 4 groups: information providing (inform),
query (request, reqalts, reqmore), confirmation
(confirm, affirm, negate, deny) and housekeep-
ing (hello, thankyou, bye, ...). Slots and values
are domain dependent and correspond to specific entries
in the backend database. For instance the utterance “hello
i am looking for a french restaurant in the south part of
town” corresponds to the dialogue act sequence “hello(),
inform(food=french), inform(area=south)”.

3. TOWARDS ONLINE ADAPTATIVE ZERO-SHOT
LEARNING

The zero-shot learning, as proposed in [21], corresponds to a
learning scheme where possible values for a given class in-
clude cases that have been omitted from the training exam-
ples. In this study, we focus on the problem of predicting the
semantic tag sequence of a user query without having seen
any example of in-domain user utterances and thus in-context
semantic tags. This is done by defining a semantic knowledge
mapping between in-domain and general knowledge data in
order to extrapolate these tags.

3.1. Zero-learning for SLU

The initial model, depicted in Figure 1, makes use of three
main components. The first one is a semantic feature space
F based on word embedding learnt with neural network algo-
rithms [16, 22]. This representation offers a continuous rep-
resentation of word. Indeed, several researches pinpointed
the interest of exploiting some regularities between syntac-
tic/semantic features of words and their corresponding em-
bedding for different NLP tasks (e.g. [23]). The objective is
to define a metric space encoding the semantic properties of
all possible tags.

The second component is the semantic knowledge base
K that corresponds to a domain-specific assignment table (as
shown in Fig. 1) where each row represents the assignments
to each possible semantic tags (columns) for a specific d-

Fig. 1. Illustration of the zero-shot learning SLU parsing and
adaptation

dimensional vector in F . Such kind of vectors are obtained by
projecting into F some lexical items, called chunks hereafter
as they may include compounds of words extracted from the
ontological description of the domain. For example, “what
food is served?” for request(food), or “french food”
for inform(food=french). These chunks can be eas-
ily obtained by an automatic process over the ontology and
the backend database combined with a few manually defined
dialogue acts examples (as acttypes are not present in the
ontology).

Thus, in Fig. 1, K’s rows and columns are labelled with
chunks and semantic tags for convenience. Basically the
value in each cell ci,j , denoted as the assignment value here-
after, indicates if any assignment exists between the ith vector
in the semantic space and the jth semantic tag. The assign-
ment values are initiated with binary values. Notice that we
do not constrain the current representation to one-to-one map-
ping between chunks and tags, so several assignments could
be not null in a single row. For instance, the chunk “Paris”
could be associated to both inform(location=Paris)
and inform(name=Paris) if a venue happens to be
named Paris.

The third component of our proposed baseline model
is the SLU parser. It extracts a scored graph of seman-
tic tag sequence hypotheses from any novel user utterance.
All contiguous word sequences (chunks) are considered in
the parsing algorithm. For example if the user says “yeah
downtown”, as in Fig. 1, 3 different chunks are considered:
“yeah”, “downtown” and “yeah downtown”. These chunks
are mapped to the feature space F with the same method
used to map K’s chunks into F . The resulting vectors (blue
circles in Fig. 1) are then compared in terms of similarity
(e.g. cosine similarity) to the known chunk vectors (black
crosses in Fig. 1). Then, a dot product between the similarity
vector and K matrix is computed and a k-nearest neighbors
classifier is employed to attribute to each chunk the ordered
semantic hypotheses (one for each possible tags). These lat-
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ter are then employed to construct a finite-state transducer
where chunks and their corresponding semantic hypotheses
are the edge labels, weighted by the distances (inverses of
the observed similarities). A final rescaling process allows
to balance the influence of chunk lengths. The best semantic
utterance hypothesis is obtained by a shortest-path decoding
of the finite-state machine (highlighted path in Fig. 1).

3.2. Online adaptation

Based on the baseline SLU parser, an online adaptation pro-
cess is defined with which we intend to refine incrementally
the assignment values in K according to some feedbacks
gathered during live usage of the system. Indeed, even if
the performance being generally measured only on a bag of
tags, a direct word (or chunk) to tag association can be re-
trieved from the finite-state transducer produced by the SLU
parser and thus can be employed to adapt the model with new
information.

In order to minimize the supervision effort, an adaptation
scheme where the supervision is limited to binary feedbacks
(validation-refutation) is envisioned. This technique, involv-
ing no manual corrections to assign the true labels, can be
easily integrated in an existing dialogue setup and allows to
master the ratio cost/improvement through the quota of feed-
backs asked to the user at each turn. Defining an optimal
strategy with respect to this ratio will be addressed in further
works. In the present work, only improvement is targeted and
a user giving all feedbacks possible at each turn is simulated.
These feedbacks are then employed to update K to K∗.

An example of that process is given in Fig. 1. It illustrates
a case where the true semantic labels of the user utterance are
misrecognized by the parsing strategy: the utterance “yeah
downtown” is tagged as affirm(), inform(area=so-
uth) instead of affirm(), inform(area=centre).

The user feedbacks populate a set of m tuples U =
((ck, Tk, fk))1≤k≤m, where (ck, Tk) is the chunk/tag pair
proposed to the user and fk is her feedback (1 positive, 0
negative). Given K and U after each interaction Algorithm 1
(partially illustrated in Fig.1) is used to update K to K∗.
Each cell (i, j) in K corresponds to a chunk (row)/tag (col-
umn) pair and encloses 4-values: pi,j and ni,j represent
respectively the number of observed positive and negative
feedbacks up to now, knni,j is the value obtained by com-
puting an element-wise addition of the k nearest neighbors
rows (rescaled via a dot product of the normalised similarity
of these rows to the ith chunk - Alg. 1.16) and ci,j is the as-
signment value, exploited by the parsing algorithm presented
above. The algorithm shows how K is extended with new
rows and how every ci,j is updated. Basically, first a new
row is added to K each time an unseen chunk ck is found in
U (see Alg. 1.4-6). Then we update all the feedback counts
based on U (see Alg. 1.8-9). For that purpose two scaling
factors αp and αn allow to scale the importance of the new
information, and can be set to different values to distinguish

Algorithm 1 Knowledge base update
1: Given: K and U Output: K∗

2: K∗ ← K
3: for all (c, T, f) ∈ U do
4: if c 6∈K∗ then
5: append new row for c in K∗ with default cells
6: mlast = 1

7: i← c-row id, j ← T -colunm id
8: pi,j ← pi,j + f × αp

9: ni,j ← ni,j + (1− f)× αn

10: if pi,j + ni,j > 0 then
11: oldc ← ci,j
12: ci,j ← pi,j

pi,j+ni,j

13: if ci,j − oldc < 0 then mi ← 1

14: else ci,j ← 0

15: for all ci,j ∈ K∗ do
16: compute knni,j

17: for all ci,j ∈ K∗ do
18: if pi,j + ni,j = 0 and mi = 1 then ci,j ← knni,j

safe data collections with trustful users from normal field on-
line adaptation. For the initial set of chunk/tag pairs, pi,js are
initiated with a prior p0. So in the general case the assignment
value is obtained as a ratio of the positive/negative feedbacks
associated to it (see Alg. 1.12).

For each row a modification flag mi is used to detect if a
prior knowledge (positive assignment) is challenged by new
evidences (measured by a decrease in ci,j , see Alg. 1.13). In
that case the other possible assignments for this chunk (other
cells in the row) have their assignment values set to the knn
value, instead of 0, so that new associations can be tested and
proposed for evaluation to the user.

4. EXPERIMENTS AND RESULTS

All experiments presented in the paper are based on the
DSTC2 datasets [20] covering the domain of restaurant
search. Event if this research challenge focused on tracking
the user’s goal all along the dialogue, here we only consider
the SLU task. Thus, we exploit the fully annotated data (e.g.
transcriptions, dialogue-act semantics) as train and test sets to
evaluate our adaptative zero-shot semantic decoding approach
on realistic dialogue settings. In our experiment, we evaluate
the approach on the given 10-best ASR of the challenge test
set (9890 user utterances). A subset of transcriptions from the
DSTC2 training set (up to 1472 transcribed user utterances)
is also exploited to simulate the online adaptation presented
in 3.2.

To define the semantic space, the word2vec [16] word-
embedding model is considered. A 300-dimensional model
was trained on a large amount of wide coverage and freely
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available English corpora1 with the Skip-gram algorithm
(with a 10-word window). The resulting model is expected to
exhibit some linguistic regularities as those shown in [24] as
well as a linear structure that makes it possible to meaning-
fully combine the words by an element-wise addition of their
word embeddings [25]. So the latter technique is employed
to directly map word chunks to their corresponding word2vec
representation sees as the sum of individual word representa-
tions. Due to fact that word2vec behaves nicely with cosine
similarity in the literature [16, 24], this metric is prefered in
a k-nearest neighbors classifier for the chunk prediction and
extension (in the following experiments k = 1 for parsing
and 20 for knn cell values). We employed the shortest-path
algorithm on the semantic graph with the cosine distance (1 -
cosine similarity) metric (see Section 3.1).

The task-dependent knowledge base used in the experi-
ments is derived from the challenge’s ontology, as well as
from a generic dialogue information. The semantics of the
DSTC2 task is represented by 16 different act types, 8 slots
and 215 values. The lexical forms (53) used to model act
types were manually written (for example “say again” for
the repeat act). In the considered ontology, slots and val-
ues have already lexicalised names (e.g. “address”, “french”,
etc.). Overall, 4160 automatically generated chunks are con-
sidered and assigned to 663 different semantic tags.

In order to compare the online adaptative capacity of the
zero-shot learning algorithm for SLU, two baselines are con-
sidered: a rule-based system used in the DSTC challenge
(noted Rules-b) and one learnt on the DSTC2 training data
(referred to as SLU1 in [26] and noted Learnt-b hereafter).
Three different Zero-Shot Semantic Parser (ZSSP) configu-
rations are evaluated to contrast the influence of both the se-
mantic space F and the knowledge base K.

First, a classic ZSSP uses a qualitative lightly handcrafted
K and a robust word2vec semantic space (as described
above); second, ZSSP.F̃ uses a word2vec space limited to
a 50-dimensional model learnt on a small in-domain training
set (DSTC2 training set with user and system utterances);
finally ZSSP.K̃ uses a downgraded (cheaper) version of K
where 10% among the manually written forms were pruned.

In order to determine the impact of the online adaptative
scheme described in Section 3.2, transcribed utterances from
the DSTC2 train set are used to simulate online adaptation
(avoiding noise due to ASR errors) and the test set (10-best
ASR user inputs) for evaluation. For adaptation, the user
feedbacks are simulated by comparing the top-hypothesis
of the current model to the reference semantic label in the
DSTC2 annotations for each proposed chunk. All semantic
tags of the top SLU hypothesis present in the true semantic
sequence are considered as positive and all others as negative.
K is updated at the end of each turn (with αp = αn = 1).

Results in Figure 2 show the evolution of the F-score ac-

1enwik9, One Billion Word Language Modelling Benchmark, the Brown
corpus, English GigaWord from 1 to 5
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Fig. 2. Refined performance in terms of F-score on DSTC2
test set of various configuration of the online adaptation
method according to the number of dialogues.

cording to the number of adaptation dialogues. Before adap-
tation ZSSP (0.794) and ZSSP.K̃ (0.775) reach close to the
Rules-b performances (0.782) without specific handcrafted
rules (human expert cost) or training data (annotator cost). A
semantic space learnt on a little amount of non-general data
can significantly impact the initial performance as shown with
ZSSP.F̃ (0.684) due to both out-of-vocabulary words and bad
generalisation properties of this semantic space.

Nevertheless, in all ZSSP configurations, the performance
grows jointly with the number of adaptation dialogues. In-
deed, both ZSSP and ZSSP.K̃ configuration obtain perfor-
mance significantly better than the two baselines after only
100 dialogues: 0.811 for the two ZSSP methods vs. 0.782 for
Rules-b and 0.803 for Learnt-b (not showed in Fig. 2). More-
over, even the gap between ZSSP.F̃ and Rules-b is clearly re-
duced all along the online adaptation (from 0.098 to 0.017 af-
ter 200 dialogues). This particular point demonstrates that the
proposed method can also deal with unfitted semantic space.
These overall results flag the benefit of the proposed online
adaptation method to cope with both the limitations of the
initial K coverage and F robustness.

5. CONCLUSION AND FUTURE WORKS

In this paper a method for zero-shot learning SLU is proposed
and tested. It is shown that such method reaches state-of-the-
art performance on the DSTC2 task. In particular the exten-
sion of the method to an online adaptation scheme has been
proved to be efficient and to provide a practical way to alle-
viate some of the limitations inherent to a zero-sot learning
approach based on a word embedding semantic space such as
the initial quality of both the semantic space and the knowl-
edge base. The supervision effort still remains very low since
the user is just asked to confirm some hypotheses made by
the system but never to explicitly correct any error. However,
comparison with other active learning techniques and general-
isation of the approach in a reinforcement learning framework
are in progress and its integration in a live dialogue system
should be presented soon.
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