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ABSTRACT

Recently there has been great interest in the application of
word representation techniques to various natural language
processing (NLP) scenarios. Word representation features
from techniques such as Brown clustering or spectral cluster-
ing are generally computed from large corpora of unlabeled
data in a completely unsupervised manner. These features
can then be directly included as supplementary features to
standard representations used for NLP processing tasks. In
this paper, we apply these techniques to the tasks of do-
main classification and intent detection in a spoken language
understanding (SLU) system. In experiments in a personal as-
sistant domain, features derived from both Brown clustering
and spectral clustering techniques improved the performance
of all models in our experiments and the combination of both
techniques yielded additional improvements.

Index Terms— word representation, hierarchical cluster-
ing, spectral clustering, spoken language understanding

1. INTRODUCTION

Spoken language understanding (SLU) systems are now
widely available and commonly used in a variety of appli-
cation areas. For example, mobile phone personal assistants
such as Siri, Google Now, and Cortana provide users with a
wide range of functionality for controlling their devices and
accessing information services. Common tasks handled by
these systems include setting alarms, handling mobile com-
munications, managing calendar entries, checking weather
forecasts, and finding nearby restaurants. These mobile based
systems are typically supported by a collection of online
services that perform computational tasks such as speech
recognition and spoken language understanding and provide
access to question answering or web search services.

In this work, we focus on new methods for improving the
SLU modeling used in such personal assistant systems. Our
SLU system employs the commonly used domain/intent/slot
modeling approach [1]. The system architecture consists of
three cascaded SLU components: (1) a domain classifier,
(2) a user intent classifier, and (3) a semantic slot tagger.

Domain classification and intent classification are performed
using support vector machines (SVMs) that operate on high-
dimension feature vectors extracted from user queries. The
feature vectors contain a rich collection of features including
word-based n-gram features and dictionary-based features
indicating the presence of words or phrases contained in dif-
ferent lexical dictionaries. The slot tagging component also
uses a similarly rich high-dimension collection of features
to determine semantic slot tags for individual words or word
sequences in the query using techniques such as conditional
random fields (CRFs) or recurrent neural networks (RNNs).

The SLU approach described above applies supervised
training techniques that generally require large volumes of
annotated data. If human annotators are required, the train-
ing data set sizes can be smaller than desired due to limited
annotation resources. As a result, a common problem is data
sparsity. On the other hand, commercial SLU systems with
large user bases can provide access to massive collections of
unannotated queries that can be exploited for the discovery of
new features learned from unsupervised methods.

Recently, new methods have emerged to address data
sparsity problems through the unsupervised learning of word
representation features from unlabeled data. The inclusion
of these new features into existing modeling approaches has
resulted in performance improvements in numerous stud-
ies [2, 3, 4, 5], and particularly for the tasks of name entity
recognition [6, 7, 8, 9] and syntactic or semantic parsing.
A common and successful word representation technique in
these studies is based on the Brown clustering algorithm [10].
However, this learning algorithm is computationally expen-
sive. Recently spectral based algorithms [11, 12, 13, 14, 15]
have been proposed for fast computation of hierarchical word
clustering. These approaches generally first compute eigen-
vectors from correlation matrices learned from word statistics
to provide a word embedding representation. Next, clustering
algorithms are applied to the eigenvectors to infer the final
hierarchical clustering. Generally these low-dimension word
embeddings describe the common latent semantic structure
of the words.

In this work, we examine approaches for incorporating
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features derived from both Brown clustering and spectral
techniques into the domain and intent classification compo-
nents of our SLU system. We have observed that by simply
including word representation features into the feature vec-
tors of our standard classification approach, improvements
in classification accuracy are observed from both the Brown
clustering techniques and the spectral techniques. Further-
more, using both sets of features in combination achieved
even further improvements.

The rest of the paper is organized as follows: in section
2 we briefly review the word representation methods. In sub-
section 2.1, we describe the Brown cluster features. In sub-
section 2.2, we describe the spectral based methods, with a
focus on canonical correlation analysis (CCA). In section 3,
we describe the details of our experimental set-up. We present
the results in Section 4 and provide conclusions in Section 5.

2. BACKGROUND

Word representations generally fall into two categories: hier-
archical clustering based word representations such as Brown
clustering and dense representations. The dense representa-
tions are real-valued and low-dimensional, where the coordi-
nates generally represent some hidden states of the syntactic
and semantic word properties. There are a few approaches for
inferring the embedding such as neural network, log-linear
models or spectral based methods.

2.1. Brown Clustering

Brown clustering is a bottom-up algorithm that derives a hi-
erarchical clustering of words. Clustering is performed in a
greedy fashion such that the two word clusters with largest
mutual information, as measured from bigram context statis-
tics, are merged at each step. The cluster tree yields a hard
clustering such that each word belongs to only one branch of
the cluster tree. Different depths of the clustering tree repre-
sent different levels of semantic similarity with greater gen-
eralization near the root of the tree. By allowing the learning
algorithm to draw analogies between different words at dif-
ferent levels of the tree, the Brown clustering alleviates the
sparsity problem.

2.2. Spectral Based Clustering

Spectral clustering using canonical correlation analysis (CCA)
provides an alternative method for word clustering [7, 11, 12].
CCA is a statistical analog of principal component analysis
(PCA) and can compute the projection of maximal corre-
lation between pairs of matrices. When applied to bigram
context distributions of words, the top few eigenvectors of
CCA with the highest eigenvalues can approximate the latent
structure of words. After these eigenvectors are computed,
clustering algorithms such as K-means can be applied to infer

word clusters. Recently the work by Hsu et al [14] suggests
that CCA type spectral algorithms can learn a Brown clus-
ter model in polynomial sample/time complexity. Stratos et
al [15] also proposed a new CCA based approach using a
bottom-up agglomerative clustering algorithm. We follow
their approach for the word embedding computation in this
paper.

3. EXPERIMENTAL SETTING

In the experiments carried out below, we use SVMs as super-
vised classifiers for both the domain classification and intent
detection. There is some experiment design difference be-
tween the two tasks. In our domain classification task, we
first build a SVM based binary classifier for each domain and
transform the output via a sigmoid function [16] to a score,
and then compare the scores across all domains. Intent de-
tection classification is performed in the same fashion, but is
carried out with domain specific intent models inside each re-
spective domain. Note within each domain, the number of
intents varies from 8 to 20. So each domain specific intent
classifier is a multi-class SVM, which differs from the binary
SVM for each domain model. For each task, we compute the
SVM with a basic feature set as the baseline. For our experi-
mental comparison, we then add Brown cluster (BC) features,
word embedding (WE) features, and both Brown cluster and
word embedding features (BC+WE) to the baseline features.

3.1. Data

The domain and intent classification experiments in spoken
language understanding are run in seven domains. These do-
mains generally refer to the categories of service quests. For
example, the query ”how is the weather at LA?” is mapped
to the weather domain. If the query falls outside of the seven
domains, it is assigned to the ”other” domain (Domain 8 in ta-
bles below). Our data set is divided into three parts: training,
validation and test. The training data has approximately 540K
spoken queries, and the validation and test sets each contain
approximately 27K queries.

3.1.1. Unlabeled data

Independent of the datasets used in the train/validation/test
procedures, we randomly sampled 24 million unannotated
spoken queries collected by a preexisting personal assistant
system, and used these for computing the word representa-
tion features. The dataset contains approximately 102 million
tokens and one million unique words. We applied the same
preprocessing procedures, such as routine text normalization,
to these unlabeled data as to the training/validation/test data.
We used the C++ implementation of Brown clustering by
Liang [3]. As observed by many others, the algorithm is
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computationally expensive. In our experiment, it took ap-
proximately 80 hours on a multi-threaded 4-core machine to
produce the Brown clustering for the full data set. On the
other hand the CCA based spectral method is much faster,
typically finishing the same computation within an hour.

3.2. Baseline Feature Sets and Model

We used all of the word unigrams, bigrams and trigrams in
the training datasets as baseline features. The dimensions
of them are respectively 92K, 643K and 1,208K with total
1,945K features. Although our task has domain specific class
based lexicon dictionaries available, we discovered features
derived from these lexicons did not improve performance be-
yond the basic word ngram features, and hence are not used
in these experiments. Both the domain classification and user
intent detection use the multi-class SVM classifier algorithm
formulated by Cramer and Singer [17]. For the purpose of fast
training on the large dataset, we restrict the SVM to the sim-
ple linear kernel, as the nonlinear kernels require a significant
increase in training time due to the very high dimension of
ngram features in our setting. The implementation is similar
to the widely used package Liblinear [18].

3.3. Including Word Cluster Features

To use the word cluster features, we simply add indicator fea-
tures which equal one when a word in the utterance appears
in the corresponding cluster. This is equivalent to a unigram
indicator function over the sequence of Brown cluster labels.
Words that are unseen in the unlabeled dataset are assigned to
the special cluster of UNK, as is common in the literature. As
the Brown clusters are essentially hierarchical trees, different
depths represent clustering at different levels of generality.
One can extract clustering features at multiple depths of the
hierarchy. Following Ratinov & Roth [9], we used clusters
at depth 4, 6, 10 and 20. Though the features generated at
different levels overlap, generally the learning algorithm will
automatically select those most useful features.

3.4. Including Word Embedding Features

In our experiments we use word embedding features derived
from CCA as described by Stratos [15]. Word embedding
features map each word to a real-valued vector of fixed di-
mension d, where d is selected in advance. The word embed-
ding feature vector for a query is the component-wise average
of all the associated vectors of the individual words from the
query. So the word embedding feature dimension increases
by only d. The word embedding features are continuous and
real-valued. They differ from the other binary features in our
feature sets which only takes 0 or 1 as their values. To in-
clude them as extra features together with other binary fea-
tures, it is helpful to suitably scale them for best performance.
The model can be sensitive to the scaling, as observed by

others in the literature [19, 3]. Following Turian et al [19],
we assume the embedding matrix is denoted as a matrix E,
where Ei is the row for the ith word in the vocabulary. We
use the overall scaling strategy by normalizing Ei with con-
stant Max(Ei). In the experiments we tried the dimension
to be 50, 100, 150, 200, 250 and 300. We stopped at 300 due
to memory limitations, as our vocabulary size goes beyond
100k.

4. RESULT AND DISCUSSION

We reported results in the Tables 1 and 2. We denote Brown
cluster and word embedding feature sets respectively by BC
and WE. The Baseline models simply use all the unigram, bi-
gram and trigram features in the training data sets. For the
domain model result in Table 1, we observed that including
Brown cluster features achieved a significant error drop for
most domains. On average across all eight domains the er-
ror rate dropped from 5.51% to 5.31%. For WE features, the
error rate reduces to 5.37%. When we combined Brown clus-
ter and word embedding features, the average error rate of the
domain model dropped from 5.51% to 5.25% (a relative 4.7%
drop).

In the intent model in Table 2, all seven domains achieved
a reduction in error rate for the BC features. The average er-
ror rate across seven domains drops from 5.20% to 4.65% (a
relative 10.3% drop) for BC features, and to 4.74% (relative
8.69% drop) for WE features. When BC and WE features are
both included, we still observe slight error reduction with er-
ror rate drops to 4.60%. Compared with the domain model
result in Table 1, the effect of combining both BC and WE is
small. We hypothesize that this may be due to the design dif-
ference of the experiment procedures. Generally both BC and
WE are respectively discrete (one-hot) and continuous (com-
pact) word representations. Note they essentially assume the
same bigram Brown cluster model. For the word embedding
features, we observed a similar result with slightly worse per-
formance compared with Brown cluster features. This obser-
vation is consistent with other reports in the literature [19, 15].
A general hypothesis is that BC features works better with lin-
ear classifiers than the real-valued WE features. In our exper-
iments, we used a corpus count threshold of 20 for inclusion
of words in the computation of word embedding. In the Table
1 and 2, the word embedding feature vectors have a dimen-
sion of 300. We observed similar performance for dimensions
from 100 to 300.

We also tried including the bigrams and trigrams of
Brown cluster features in the model. For example, a query of
three words W1W2W3 where each word Wi has correspond-
ing class Ci. Then the BC bigrams are C1C2 and C2C3 and
the BC trigram is C1C2C3. However, these features do not
improve the model accuracy further.
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Domain Baseline +BC +WE +BC+WE
D1 10.84% 10.10% 10.22% 9.95%
D2 4.45% 4.12% 4.30% 4.05%
D3 10.07% 8.97% 9.14% 8.65%
D4 5.96% 5.92% 5.92% 5.88%
D5 4.29% 4.33% 4.28% 4.29%
D6 2.30% 2.25% 2.28% 2.20%
D7 4.81% 5.54% 5.53% 5.45%
D8 4.22% 4.21% 4.21% 4.20%

Average 5.51% 5.31% 5.37% 5.25%

Table 1. Domain Model Error Result. Baseline stands for the
base model with only n-gram features. BC stands for Brown
cluster feature. WE stands for word embedding features of
dimension 300.

Domain Baseline +BC +WE +BC+WE
D1 5.96% 5.38% 5.46% 5.38%
D2 5.72% 4.68% 4.98% 4.81%
D3 7.96% 7.29% 7.41% 7.24%
D4 5.12% 5.19% 4.75% 4.82%
D5 1.43% 1.29% 1.52% 1.15%
D6 4.73% 4.32% 4.42% 4.23%
D7 5.41% 4.53% 4.61% 4.53%

Average 5.20% 4.64% 4.75% 4.60%

Table 2. Intent Model Error Result. Baseline stands for the
base model with only n-gram features. BC stands for Brown
cluster feature. WE stands for word embedding features of
dimension 300.

5. CONCLUSION

In this paper, we provided empirical result of using word rep-
resentation techniques to the classification tasks in SLU. We
computed word representation features on a large volume of
unlabelled data in a real SLU system, and included them as
additional features in the SVM based classifiers for domain
classification and intent detection tasks in SLU. Significant
error rates drop have been observed. For the spectral based
clustering algorithm, we proposed directly using the word
embedding features rather than the inferred clusters. For the
optimal usage of unlabelled data, we found combining the
classical Brown features and word embedding features gave
the best performance.
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