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ABSTRACT

Deep learning technologies have been successfully applied to acous-
tic emotion recognition lately. In this work, we propose to ap-
ply multi-task learning for acoustic emotion recognition based
on the Deep Belief Network (DBN) framework. We treat the
categorical emotion recognition task as the major task. For the
secondary task, we leverage two continuous labels, valence and ac-
tivation. Two strategies are employed to achieve multi-task learning.
First, we map the continuous labels into three categorical labels:
low,medium, high, and use classification for the secondary task.
Second, we project the continuous labels into [−1, 1] range, and
use regression for the secondary task. The combination of the loss
functions from the major and secondary tasks is used in the objec-
tive function in multi-task learning. After iterative optimization, the
values from the last hidden layer are used as features in the back-
end SVM classifier for emotion classification. Our experimental
results show significant improvement over the baseline results using
DBN, suggesting the benefit of utilizing additional information in a
multi-task learning setup.

Index Terms— Emotion Recognition, Multi-task learning,
Deep Belief Network

1. INTRODUCTION

Emotion recognition has attracted a lot of interest recently. Re-
searchers have considered different modalities for this problem, such
as facial expression, speech, and text. Several shared tasks related
to emotion recognition have been developped in the past few years,
with different task definitions. For example, in [1, 2], the task was
to recognize categorical emotions; in [3, 4], systems were required
to use regression to predict continuous values based on dimensions
such as valence and activation; and in [5], the goal was to recognize
emotions given selected movie clips, which is quite difficult even for
the state-of-the-art systems.

Acoustic emotion recognition has been extensively studied in
the past decade. Systems have used dynamic features with Hid-
den Markov Model (HMM) [6], supra-segmental features with sup-
port vector machines (SVM), and combined features from multiple
modalities [7], just to name a few. With great success on automatic
speech recognition [8] and image recognition [9], deep neural net-
work (DNN) technologies have also been investigated and applied
to acoustic emotion recognition. In [10], a Deep Belief Network
(DBN) is built based on dynamic audio features and a temporal pool-
ing method is applied to generate fixed length hidden features, which
are fed into a soft-max layer for fine-tuning. In [11], auto-encoders
are applied for transfer learning to alleviate the difference between
emotion databases. In [12], the authors modified the auto-encoders
and used two hidden representations (one for neutral speech, one for

emotional speech) to extract more robust low dimensional emotional
features. In [13], DBN is trained to capture the hidden dependency
across video and audio modality.

Multi-task learning has been widely applied to many speech
and natural language processing related problems [14, 15]. The ad-
vantage of multi-task learning is to improve system generalization
by learning shared representations between appropriate tasks [16].
Classifiers learned based on the primary task can be better trained
with the help of other related tasks. In some speech related tasks,
multi-task learning has shown impressive performance once suit-
able minor tasks are found related to the major one. In [17], for
phone state recognition, the authors explored using different auxil-
iary tasks, phone label, phone and state context, and showed better
recognition performance. [18] [19] used multi-task learning in fa-
cial based emotion recognition, and considered facial verification
and facial landmark prediction as the potential auxiliary tasks. To
our knowledge there is very little work using multi-task learning for
speech based emotion recognition.

In this work, we propose to use multi-tasking learning in the
deep belief network (DBN) framework for speech emotion recogni-
tion. Typically, two kinds of labeling approaches are used to repre-
sent human emotions, categorical and continuous labels. The cate-
gorical labels can be interpreted as direct and common human mood
such as anger and happiness. The continuous labels are based on a
psychology theory that decomposes categorical emotions into con-
tinuous dimensions such as valence and activation, among others.
We propose to treat valence and activation recognition as the sec-
ondary task in multi-task learning. Two different strategies are used
to integrate the secondary task into the traditional categorical emo-
tion recognition system in this study. First, valence and activation
labels are clustered into three level labels, and thus the learning task
is a classification task. The DBN is trained to simultaneously op-
timize the classification performance of the major emotion classifi-
cation task and this secondary task. In the second method, we lin-
early normalize the valence and activation labels into the range of
[−1,+1], and use a regression task for it. The DBN system learns
to lower the regression error of the secondary task while minimizing
the classification error of the major task. We evaluate our proposed
multi-task learning method using the USC-IEMOCAP database [20]
and show significant improvement over the standard static features
based method and the DBN system.

2. DEEP BELIEF NETWORK

In this paper, we use the deep belief network (DBN) framework for
emotion recognition, where DBN is applied to the original raw au-
dio features to extract better feature representation, which is then
fed into another classifier, e.g., support vector machines (SVM). We
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briefly describe DBN in this section. The DBN is constructed by
stacking more than one Restricted Boltzmann Machines (RBMs),
which is one special case of undirected graphical models [21]. This
framework learns to extract meaningful hidden hierarchical repre-
sentation from the training data.

The pre-training stage typically is done in a greedy layer-wise
manner. In this work, Gaussian-RBM is used as the layer component
in order to model the real-valued acoustic inputs. Given input data
v as visible nodes and hidden variable h as hidden nodes, the joint-
probability of Gaussian-RBM is as follow:

p(v) =

∑
h e
−E(v,h)

Z
(1)

where Z is the partition function, and the energy function E(v, h) is
calculated as:

E(v, h) =
∑
i∈vis

1

2σ2
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where wij is the connection matrix between the hidden and visible
nodes, σi is the standard deviation of visible unit i, b and c are bias
vectors for the visible and hidden nodes respectively. The learning
process is to minimize the empirical negative log-likelihood of train-
ing data. However, the exact solution is computationally intractable
since the sum in the partition function needs to run over an exponen-
tial number of joint combinations of the visible and hidden nodes.
The approximate algorithm called Contrastive Divergence (CD) in-
troduced in [22] can be applied to update parameters efficiently.

In this DBN framework, we use the Noisy Rectified Linear
Unit (NReLU) as the non-linear activation function instead of us-
ing sigmoid. The NReLU is one version of ReLU with Gaussian
noise introduced in [23]. Prior studies have shown that systems with
(NReLU) have better performance on several tasks (e.g., [24]). We
also add an upper-bound to avoid having hidden nodes with large
values. The bounded NReLU function is as follows:

min(a,max(x+N (0, sigmoid(x)))) (3)

where a is as the upper-bound (in this work a is equal to 3) and x
is the input of network. In this set-up, hidden nodes are sampled as
h = NReLU(x). The conditional probability distribution of v is:

p(vi|h) = N (vi;
∑
j

wijhj + cj , σ
2) (4)

After pre-training, the parameters of DBN are used as the initial
values and further tuned in the subsequent supervised fine-tuning
stage. Here one soft-max layer is added on top of the last hidden
layer for classification. Given the values of the last hidden layer hl,
the probability of the kth

p(yk|hl) =
eh

T
l Wk+Bk∑

j e
hT
l
Wj+Bj

(5)

where W and B are the parameters of the soft-max layer. The
stochastic gradient descent algorithm is applied to iteratively min-
imize the objective function over the training data.

3. PROPOSED METHOD

Multi-task learning can improve generalization of a model by learn-
ing from related tasks that share the same feature representation with
the main task. In this work, we use categorical emotion classifica-
tion as the major task, and investigate if it can benefit from multi-task

learning. It is important to choose appropriate related tasks for effec-
tive multi-task learning. According to the psychology theory, human
emotions can be mapped into dimensional continuous spaces, such
as valence and activation (referred to arousal in some studies). Va-
lence describes the pleasantness or unpleasantness, and activation
is to measure the stimulus degree of human activities. Intuitively
categorical emotion labels have close relation with valence and ac-
tivation labels, therefore, we evaluate using valence and activation
labels for the secondary task for multi-task learning.

Though valence and activation are defined in the continuous
space, it is not easy for humans to assign continuous values in anno-
tation. In practice, annotators are often asked to give a discrete value
from a range, e.g., [1, 5], for each unit. Using labels from multiple
annotators for a unit, the average value can be calculated and used
as the continuous label.

For multi-task learning, we adopt the DBN framework as de-
scribed above, but now the learning objective is to optimize the per-
formance for both the major task and the secondary task. Figure 1
illustrates our proposed method. The same hidden layers are shared
for the major and the secondary tasks. The DBN is tuned to optimize
the objective functions that take both of them into account. We eval-
uate two mechanisms to integrate valence and activation recognition
as the secondary task into the DBN: treating them as hard categories
and thus a classification task; or continuous values and thus a regres-
sion task. The following explains the two methods in more details.
Note that in both methods, model parameters are pre-trained first,
and only in the fine-tuning stage, the secondary task is utilized. 

Input Feature X 

Hidden Layer h1  

Emotion Recognition 

VAL./ACT. Classification 

VAL./ACT. Regression 

Major Task Secondary Task 

Hard Category based Method 

Soft Regression based Method 

Hidden Layer h2  
Softmax 

 

Tanh 

Fig. 1. Proposed multi-tasking learning framework.

3.1. Hard category based method

In this method, we cluster the continuous labels into categori-
cal labels, and treat classification of the categorical levels of va-
lence and activation as the secondary task. Three levels are used,
low,medium, high, similar to prior work in [25]. Now each sen-
tence i in the training corpus has the following feature and label
set, [xi, (yemo,i, y

c
act,i, y

c
val,i)], where xi is the feature set of sen-

tence i, yemo,i, ycact,i and ycval,i represent the associated categorical
emotion, activation and valence label respectively.

As shown in Figure 1, we keep the same structure as the original
DBN, but add another soft-max layer on top of the last hidden layer
to predict the valence and activation categories. Our goal is to learn
the model parameters to optimize for the major and the secondary
tasks. Given N training sentences, the objective function of this
system is as follows:
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Jh =

N∑
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+
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(6)

where hl,i represents the last hidden layer in the DBN when en-
rolling features of sentence i, the posterior probability P is calcu-
lated using Eq 5, and hyper-parameter α is the weight of the sec-
ondary task. Using this objective function, the model is trained to
minimize the negative posterior probability of the major task (cat-
egorical emotion recognition), and the secondary task (categorical
valence and activation recognition).

3.2. Soft regression based method

In this method, we use continuous values for valence and activation,
rather than mapping them to categorical levels. First the continuous
dimension labels are linearly regressed to the range of [−1, 1]. When
the original labels used in annotation are from 1 to 5,1 we use the the
following function, the same as level-of-interest sub-challenge task
in [26]:

yrval|act = yoval|act/2.5− 1 (7)

where yrval|act and yoval|act represent the regressed and the original
continuous labels for valence or activation.

For the continuous labels, the soft-max layer is not applicable,
therefore we use a different objective function. Given the values of
the last hidden layer hl,i ∈ Rm, the predicted value ypval|act,i for
sentence i is calculated using the following formula:

ypval|act,i = tanh(Wr,val|acthl,i + br,val|act) (8)

where Wr,val|act ∈ Rm and br,val|act are the weights and bias,
for valence or activation respectively. Note that tanh(z) = (ez −
e−z)/(ez + e−z) is applied as a non-linear activation function here,
since its output ranges from -1 to 1. Using the predicted value
ypval|act for N training sentences, the mean squared error between
ypval|act and yrval|act is calculated as the loss function:

Lcon,val|act =
1

N

N∑
i=1

1

2
∗(ypval|act,i−y

r
val|act,i)

2+γ∗||Wr,val|act||22,

(9)
where ||Wr,val|act||22 =

∑m
j=1W [j]2r,val|act is L2 regularization

with γ as hyper-parameter (in this paper, γ is equal to 0.001). Then
this loss function is used in the objective function for the secondary
task. The objective function for the whole system becomes:

Js = −
N∑
i

log(P (yemo,i|hl,i))+β ∗ (Lcon,val+Lcon,act) (10)

where β is the hyper-parameter to control the influence of the loss
of the regression function for the continuous labels. This objective
function aims to minimize the negative posterior probability of the
emotion label and the mean squared error between the predicted and
the reference valence and activation values.

1For different annotation schemes, similar scaling methods can be used to
map the range to [−1, 1].

4. EXPERIMENTS

4.1. Data

We use the Interactive Emotional Dyadic Motion Capture (USC-
IEMOCAP) database [20] in this study. This corpus has approxi-
mately 12 hours of audiovisual data, including video, speech, mo-
tion capture of face, and text transcriptions [20]. It has 10 profes-
sional actors (5 male and 5 female) acting in two different scenar-
ios: scripted play and spontaneous dialog, in their dyadic interaction.
Each interaction is around 5 minutes in length, and is segmented into
sentences. These sentences are labeled by at least 3 annotators. We
use four emotion categories in this study: angry, happy, sad, and neu-
tral. Note that we merged ‘happy’ and ‘excited’ in the original an-
notation into one class: happy. Only the utterances with the majority
agreement are used. In total, there are 5531 utterances selected from
the entire data set in this experiment. The class distribution is: 20%
angry, 29.6% sad, 19.6% happy, and 30.8% neutral. In this corpus,
self-assessment manikins are used as the tool to annotate the valence
and activation. The annotation scale is from 1 to 5. Three annota-
tors, including the participant him/herself and two other annotators,
were asked to label continuous dimensions.

4.2. Features

We use the static features extracted with openSMILE [27] as the
input signal in the DBN framework. There are 1,584 features in total,
as used in the INTERSPEECH 2010 Paralinguistic Challenge [26].
Since the feature values have very different ranges, we standardized
all the features before using them as the input to DBN. Details of the
features can be found in [26]. Table 1 summarizes these features.

Table 1. Acoustic feature sets: 38 low-level descriptors (LLD) and
21 functionals.

Descriptors Functionals
PCM loudness Position max./min.
MFCC [0-14] arith. mean, std. deviation

log Mel Freq. Band [0-7] skewness, kurtosis
LSP Frequency [0-7] lin. regression coeff. 1/2

F0 lin. regression error Q/A
F0 Envelope quartile 1/2/3
Voicing Prob. quartile range 2-1/3-2/3-1

Jitter local percentile 1/99
Jitter consec. frame pairs percentile range 99-1

Shimmer local up-level time 75/90

4.3. Experimental setup

We use the leave-one-speaker-out cross validation setup. For the
hard category method, we cluster continuous labels (in the range of
[1, 5]) to three groups: low,medium, high, corresponding to the
range of [1, 2], (2, 3.5], and (3.5, 5] respectively. For the continuous
regression method, we use Eq 7 to map the labels to [−1, 1].

The DBN is constructed by stacking two Gaussian-RBMs. In the
pre-training stage, we first initialize parameters of Gaussian-RBM
with small numbers. The learning rate is set as 0.001 and the number
of training epochs is 10. During training, Contrastive Divergence
with one-step (CD-1) is used for sampling. In pre-training, we used
the mini-batch mode with 64 instances in each mini-batch. In the
fine-tuning stage, we use 8 iterations with 0.02 as the learning rate.
We utilize Theano to implement our system. The detail of Theano
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can be found in [28]. After pre-training and fine-tuning, the training
and testing instances are enrolled into the DBN. Then the values of
the last hidden layer are extracted as new features. We use SVMs
with linear kernels as the classifier for emotion recognition.

4.4. Results

Table 2 shows the emotion recognition results based on the un-
weighted average accuracy (UA). This metric has been widely used
in many emotion related challenges. It is the average accuracy across
all the emotion classes. We compare our method to several systems.
First is the baseline approach that uses the original static feature set.
The second one uses the output of the last hidden layer from DBN
as features. This is a baseline DBN method, without the multi-task
learning strategy. Since our method uses additional information
from valence and activation annotation, for a fair comparison, we
design two systems that also leverage valence and activation infor-
mation. We build a classifier based on the static features to predict
valence and activation labels, using the three level class. For each
utterance, the posterior probabilities of activation and valence from
the classifier are incorporated as additional features. Note that for
the training instances, we used a cross-validation setup to generate
the predicted valence and activation labels. Since we have two dif-
ferent feature sets, the original static features and features generated
by the DBN framework, two new feature sets can be formed by
concatenating the posterior probabilities of valence and activation
with them. These correspond to Staticfeatures + Pred.act,val
and DBNfeatures+ Pred.act,val in the table. The last two rows
show the emotion recognition results based on our proposed multi-
task learning using two strategies, hard category and soft regression
based respectively.

Table 2. Emotion classification results (in %).
System UA

Static features 59.7
DBN framework 60.5

Staticfeatures+ Pred.act,val 60.7
DBNfeatures+ Pred.act,val 61.1

Hard category 62.2
Multi-task learning Soft regression 62.5

From Table 2, we can see there is a performance gain using
the features derived from the DBN over the original static features,
showing the benefit of better representation via DBN. Using our pro-
posed methods (last two rows) achieves the highest accuracy, which
demonstrates the effectiveness of considering the valence and acti-
vation labels during training with the multi-task learning strategy.
The improvement is statistically significant based on one tailed z-
test (p < 0.05). Between using the hard categories vs. continuous
values, the latter is slightly better, suggesting that there is some loss
of information when using the hard categories for the valence and
activation values. Regarding the systems that use the predicted va-
lence and activation information as additional features, we can see
there is a performance improvement comparing to the correspond-
ing original systems without using the extra features. However, it
does not bring as much gain as our proposed method. This is in part
because the performance of activation and valence prediction is not
great, but more importantly, this shows that multi-task learning is an
effective way to use the valence and activation annotation.

We also investigate the impact on system performance by vary-
ing parameters α and β, which control the strength of the cost func-
tion for the secondary task. Figure 2 shows the curve of UA by

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Weight for secondary task

60.5

61.0

61.5

62.0

62.2

62.5

63.0

U
A
 [
%
]

Hard category
Soft regression

Fig. 2. Tuning hyper-parameters α and beta for emotion recognition

changing the weights from 0.0 to 1.2. When the weight is 0, the re-
sults are the same as the basic DBN framework without using multi-
task learning. As the weight increases, system performance first im-
proves, and then starts to drop when the weight of the secondary task
is too large. The best performance is achieved when α is 0.4 and β
is 1.0 (corresponding to the results shown in Table 2).

The results above show that emotion recognition performance
can benefit from the multi-task learning framework by considering
both activation and valence labels. We conduct further experiments
by treating activation and valence separately as the secondary task, in
order to evaluate their individual contributions. Similar DBN frame-
work and objective functions are used; the only difference is that
we only use either activation or valence in this experiment. Table 3
shows the results. It shows that enrolling activation or valence alone
can also improve the system performance compared to the baseline
(first two rows in Table 2). However, the results are worse than con-
sidering both, which is expected. Table 3 also shows that using ac-
tivation performs slightly better than valence. Finally we performed
system combination where we concatenated the feature sets learned
by using either valence or activation in the secondary task, and found
the results are not as good as our proposed method. This shows that
learning model parameters in the multi-task learning framework has
advantages in that the system can jointly optimize multiple tasks.

Table 3. Emotion classification results (in %).
System UA

activation 62.0
Hard category valence 61.9

activation 62.1
Soft regression valence 61.7

5. CONCLUSION AND FUTURE WORK

In this paper, we propose to apply multi-task leaning on acoustic
emotion recognition based on Deep Belief Network. The secondary
task is based on valence and activation recognition. We evaluated
two different ways of representing the secondary task, a classifica-
tion or a regression task. Our experiments show significant improve-
ment using multi-task learning over the original single task learning
framework. In the future, we plan to investigate whether we can fur-
ther improve the system by modeling the relationship of valence and
activation.
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