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ABSTRACT

In many spoken language understanding systems (SLUS), do-
main classification is the most crucial component, as sys-
tem responses based on wrong domains often yield very un-
pleasant user experiences. In multi-lingual domain classifica-
tion, the training data for some poor-resource languages often
comes from machine translation. Some of the higher order n-
gram features are distorted during machine translation. Fea-
ture co-occurrence becomes reliable feature in multi-lingual
domain classification. In this paper, in order to effectively
model feature co-occurrences, we propose Factorization Net-
works that are combinations of Factorization Machines (FMs)
with Neural Networks (NNs). FNs extend the linear connec-
tions from the input feature layer to the hidden layer in NNs
to factorization connections that represent the weights of fea-
ture co-occurrences using factorized method. In addition to
FNs, we also propose a hybrid model that integrates FNs, NNs
and Maximum Entropy (ME) models together. The compo-
nent models in the hybrid model share the same input fea-
tures. Based on two data sets (ATIS data set and Microsoft
Cortana Chinese data ), the proposed models shows promis-
ing results. Especially for large Microsoft Cortana Chinese
data which is translated from well annotated English data, FNs
using unigram, class and query length features achieve more
than 20% relative error reduction over linear (SVMs).

Index Terms— Factorization Networks, Spoken Lan-
guage Understanding, Domain Classification

1. INTRODUCTION

Spoken language understanding (SLU) is an emerging area
that involves speech and natural language processing. In a
typical SLU system, human input queries are first classified
into different domains. The intents and slots of the queries are
further determined by specific domain dependent models. In
such an architecture, domain classification is the most crucial
component for user experiences. An error in domain classifi-
cation will trigger wrong intent and slot extraction models.
SLU in multi-lingual conditions is a challenge research,
especially for poor-resource languages and new domains.
Training an SLU system usually requires supervised data that
involves expensive and time consuming manual data col-
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lection and domain/intent/slot annotation. However, multi-
lingual SLU applications usually have one language with rich
resource and the other languages that don’t have much anno-
tation and labeled data. A widely used approach is based on
machine translation (MT), which translates queries from the
resource rich language to the queries from the resource poor
language.

When the MT systems are properly used, the translated
queries have reliable unigram statistics. But higher order
statistics are often distorted due to alignment and word re-
ordering. An example is shown in Fig.1 that compares a
translated query with a real query. In real query, the Chi-
nese word fomorrow is put at the beginning of a query, but
the translated query puts the word tomorrow to the end.
Therefore, the valid Chinese bigram tomorrow I is lost in the
translated query.

Do | need an umbrella tomorrow

English query

N -
_ﬁ LA 22 «h @ Translated query

; BE BE He

Practical query

Fig. 1. A noisy query generated from machine translation.

However, one observation we have from the figure is that
the word I co-occurs with the word tomorrow even though
they are not right next to each other. Such observation is
called co-occurrence.

Support Vector Machines (SVMs) are widely used to
model feature co-occurrence using polynomial kernels. How-
ever, polynomial-kernel SVMs model each co-occurrence by
completely separated weights, which require sufficient num-
bers of co-occurrences to appear in training data for reliable
estimation of the weights. For resource poor languages, it is
impossible to have suchlarge number of co-occurrences.

In this paper, we propose using factorization networks
(FNs) to model co-occurrences. A FN combines neural net-
works (NNs) with factorization machines (FMs) [1]. It models
co-occurrences by factorizing the inter-feature dependency,
which makes FNs more trainable, and generalizable to un-
observed feature co-occurrences. For example, suppose we
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have two queries in the training data: Where is the nearby
McDonalds and KFC and How can I go to the parking-lot
near KFC. From the co-occurrence of (McDonalds, KFC) and
(parking-lot, KFC), the FNs can model the co-occurrence of
(parking-lot, McDonalds) even though it does not appear in
the training data. The generalization capability compensates
the insufficiency of SLU training data.

2. RELATED WORK

In this section, the related work about Factorization Machines
(FMs) and Neural Networks (NNs) will be discussed.

FMs are first introduced by Steffen Rendle [1] to esti-
mate higher order feature co-occurrences in huge sparse prob-
lems by combining polynomial-kernel SvMs [2] with factor-
ization models. In that setting, SVMs fail to model feature
co-occurrences effectively due to data sparseness. SVMs di-
rectly and independently estimate the parameter for each co-
occurrence, yet most of the co-occurrences are not observed
in the training data. The basic idea of FMs is to break the in-
dependence of the feature co-occurrences by factorization in
which the parameters of the feature co-occurrences are rep-
resented by dot products of latent vectors that represent the
individual features which have inter-dependency. In addition
to using Stochastic Gradient Descent (SGD) [3], [4] applies
alternatively the least-square method and Bayesian method in
training FMs. In this paper, we apply the factorization method
in NNs to model the feature co-occurrence for domain classi-
fication in SLU, especially for multi-lingual domain classifi-
cation.

In the recent years we have witnessed a boost of apply-
ing NN-based technology in speech recognition and natural
language processing [5—10]. In particular, some of these ap-
plications are targeting at improving SLU domain classifica-
tion [11-14] using deep architecture. In addition to using
deep architecture, some of previous work [15-17] proposed
to use nonlinear connections between different layers in the
network. In this paper, we propose to use second-order FMs
connecting the input features to the hidden layer.

3. FACTORIZATION NETWORKS

3.1. Factorization Networks

A natural language query t is represented as a real value vec-
tor x(*) € R”. The task of domain classification is having a
function that maps query x(*) to a domain label.

Mlustrated in the Fig.2, a FN has three layers: input fea-
ture layer, hidden layer and output layer. The input feature
layer extracts second-order co-occurrence and first order oc-
currence features from the inputs x;. The output from this
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Input feature

Output layer
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Co-occurrence feature

Hidden layer

Factorization Networks

Fig. 2. The Factorization Networks. Blue nodes use sigmoids
as the activation function, while green nodes use softmax.

layer is therefore represented as

L

hy = Gi+ Y xiwk, e
i=1
L L

Ge = Y (Bri» Brj)xix; 2
i=1 j=i+1

where the k-th element is a linear weighted summation of the
input occurrence. The input feature weight for the occurrence
is wy; for combining the i-th occurrence with the k-th element
of the feature. (i, Si;) is the weight for co-occurrence of
input ¢ and j.

A factorization network rephrases the co-occurrence
weight as follows:

1 F

where F' specifies a factor size and is usually an order
smaller than the input feature dimension L. By expand-
ing (Zle Brifx:)? in Eq. 3 [1], each pair of co-occurrence
x;X; is weighted by Zf BrifBrjs. In other words, the weight
for co-occurrence x;x; can be computed as long as some co-
occurrence (x;X;/) and (x;/x;) exist in the training data. The
number of parameters from the input layer to the hidden layer
is HLF (the set of {fkif}) + HL (the linear connections),
where H is the number of hidden units.

In contrast, polynomial-kernel SVMs model the feature
co-occurrences in the following way:

L L
O Brisxi)® =Y Blxi| )
1 =1
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where w;; represents the weight for the co-occurrence of
x;X;. Since w;; in Eq. 4 is explicitly estimated for x;x;, it
requires the exact and sufficient number of co-occurrence of
both x; and x; to have w;; reliably estimated. In addition,



the factorization network has much smaller number of pa-
rameters than polynomial-kernel SVMs because H and F' are
much smaller than L. The forward computation of Eq.3 can
be efficiently calculated in O(F'L).

Based on Eq.3, the gradient of the factorization parame-
ters can be easily derived as

d(a <
d((ﬁkff)) = Xv(; Brjfxi) — Brigx: ©)
The hidden layer uses sigmoid function for activation.
The softmax function is used in the output layer. Training
FNs uses cross-entropy minimization criterion. During test,
the index with the maximum score, which is the conditional
probability of a label given inputs, is selected as the decoded
domain label.

3.2. Hybrid Models

Factorization connection Linear connection

Linear connection

Linear connection

Linear connection

Hybrid models

Fig. 3. The hybrid networks. Blue nodes use sigmoids as the
activation function, while green nodes use softmax.

A hybrid model, shown in the Fig.3, consists of neural
networks (NN), factorization networks (FNs) and maximum
entropy (ME) models [18]. A maximum entropy model [19]
directly connects the input feature to the activity of the output
label. The neural network model combines the input feature
linearly. The ME model has been applied in [19] to improve
Recurrent Neural Network based language models. The pro-
posed hybrid model uses ME in the same way as [19]. The FN
models the second-order co-occurrence but have O(FHL)
number of parameters. The NN has O(H L) number of pa-
rameters but only models the first order occurrence. Using a
hybrid model corresponds to interpolation of the three mod-
els.

4. EXPERIMENTS

4.1. Data Sets

Two data sets are used to evaluate the proposed method. The
ATIS dataset [20,21] is mainly about air travel. It has 22
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domains/intents such as airline, ground service and etc. There
are 893 utterances for testing (ATIS-III, Nov93 and Dec94),
and 4978 utterances for training (rest of ATIS-III and ATIS-
ID). In our experiment, we actually use 888 utterances in the
testing by removing the out-of-vocabulary domain utterance
such as (day time, flight no airline and airfare flight ). In
the training data, 170 utterances are randomly selected for
validation. The training data has 899 unigram features, 6
bigram features and 13K trigram features.

The second data set that we use is a Microsoft inter-
nal Cortana data in Chinese that is translated from English
version Cortana data. It has 8 domains: alarm, calendar, com-
munication, note, reminder, weather, places and web-queries.
We use 5.4 million queries for training and 23,300 queries for
testing. The testing data is human annotated data. The vocab-
ulary size of the training data is 144,800. 16,000 queries are
randomly selected for validation and they are excluded from
training. Unigrams, bigrams, trigrams, classes and query
length are used as features to represent each query. The total
number of unigrams, bigrams and trigrams are respectively
144,800, 4.3 million and 10.2 million.

4.2. Training Settings

The FNs and hybrid models are trained using stochastic gradi-
ent descent (SGD) with L2 regularization. The initial learning
rate for SGD is 0.1. After each epoch of training, the model
is tested on the validation data. If the likelihood on the vali-
dation data is not improved, learning rate gets halved. Train-
ing stops if validation set likelihood is not improved for two
times.

4.3. Results On ATIS

The dimensions for NN and FN are both set to 22. The fac-
tor size in FN is 8. Table 1 shows the domain classification
error rate of the proposed method, together with the results
from linear SVM, SVM using Radial Basis Function kernel
(RBF) [22], SVM using polynomial function kernel [22].

Results show that the best performance is obtained us-
ing unigram plus bigram features (1,2-gram). Using addi-
tional trigram feature actually degrades performances. This
is probably due to over-fit. The best classification error rate
is achieved by linear SVM, RBF SVM and a hybrid model us-
ing both FN and ME. With unigram features only, polynomial
SVM has the lowest error rate.

With both unigram and bigram features, factorization
alone (CFN’) achieves better performance than the linear
summation in NN. This gain is attained even with ME added.
Compared against NN + ME, FN + ME has 21% relative error
rate reduction.



model 1-gram 1,2-gram | 1,2,3-gram
linear SVM 5.7 4.4 5.7
RBF SVM 5.6 4.4 4.8
polynomial SVM 5.0 4.5 52
FM 6.8 4.7 4.9
FN 6.4 4.5 4.6
NN 5.4 5.2 5.0
NN +ME 5.4 5.6 5.3
FN +ME 54 4.4 4.9
FN +ME +NN 5.3 4.5 4.9

Table 1. Domain classification error rates on ATIS dataset.
”1-gram” stands for unigram feature. ”1,2-gram’ stands for
unigram plus bigram feature. “1,2,3-gram” stands for uni-
gram plus bigram and trigram feature.
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Fig. 4. Microsoft Internal Cortana Data classification error
rates using hybrid models. X-axis represents the hidden size
of NN neurons. “FN-h2” means 2 FN hidden neurons.

4.4. Results on Microsoft Internal Cortana Training Data

FN is expensive to use on large dataset, because of its mem-
ory consumption. We therefore uses the hybrid model de-
scribed in Section 3.2. FNs and NNs have their own hidden
layers. By maintaining a small hidden layer dimension for
FN but a large hidden layer for NN, the hybrid model may ef-
ficiently model the co-occurrence without overfit and much
memory. We plot classification error rate versus hidden layer
dimension in Fig. 4. The models use unigram, class and query
length features, and the factor size is 8. It is shown in the fig-
ure that lower classification error rate can be achieved using
bigger hidden sizes. Our experiments show that the best per-
forming hidden layer dimension is 8, which coincidentally is
the number of domains.

The Microsoft Internal Cortana training Data is much big-
ger than ATIS data set. SVM with RBF kernel and polynomial
kernels were not able to finish experiments because of large
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memory consumption. We therefore only use linear SVM as
our baseline model. Table 2 compares the classification er-
ror rates of the proposed models with linear SVM models,
which is trained using Liblinear [23] with L1 regularization
and L2 loss function. Based on the previous results, hidden
layer sizes for NN and FN, in addition to the factor size, are
all set to 8.

The table shows that by modeling feature co-occurrence,
the FN using unigram features is better than the linear SVM
with bigram features, and achieves more than 20% error rate
reduction relatively, compared to the SVM unigram model.
Used together with ME and NN features, FN is able to obtain
better performances. The hybrid model CFN + ME + NN’)
using unigram plus bigram and trigram features obtains the
lowest error rate of 9.7%, 7%+ relative error reduction over
the SVM models with the same features. We also observed
that maximum entropy features are useful for all of the eval-
uated neural network models. We also observed that NN has
similar performances as SVM, especially with unigram and
bigram features.

model 14c+len | 1,24c+len | 1,2,34+c+len
linear SVM 14.7 11.6 10.5
FM 13.9 11.8 10.5
FN 114 11.5 10.4
NN 14.8 11.6 11.0
NN +ME 11.0 104 10.3
FN +ME 10.7 10.6 9.9
FN +ME +NN 10.6 104 9.7

Table 2. Classification error rates (%) using n-gram, class (c)
and query length feature (len). ”1-gram” stands for unigram
feature. ”’1,2-gram’ stands for unigram plus bigram feature.
“1,2,3-gram” stands for unigram plus bigram and trigram fea-
ture.

5. CONCLUSIONS AND FUTURE WORK

Feature co-occurrence is a important feature in multi-lingual
spoken language understanding domain classification, espe-
cially when the training data is obtained via machine trans-
lation where the high order n-gram features are distorted.
To model the second order co-occurrence effectively, we
have proposed a method based on factorization network.
Compared with polynomial linear SVM that also models co-
occurrence, the proposed method has much smaller model
size. On ATIS dataset, the proposed method achieved simi-
lar performance with polynomial linear SVM. On Microsoft
Internal Cortana Chinese data that was a large training data
set obtained via machine translation, the proposed models
performed significantly better than polynomial linear SVM.
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