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ABSTRACT

We present a contextual spoken language understanding (con-
textual SLU) method using Recurrent Neural Networks (RNNs). Pre-
vious work has shown that context information, specifically the pre-
viously estimated domain assignment, is helpful for domain identi-
fication. We further show that other context information such as the
previously estimated intent and slot labels are useful for both intent
classification and slot filling tasks in SLU. We propose a step-n-gram
model to extract sentence-level features from RNNs, which extract
sequential features. The step-n-gram model is used together with a
stack of Convolution Networks for training domain/intent classifica-
tion. Our method therefore exploits possible correlations among do-
main/intent classification and slot filling and incorporates context in-
formation from the past predictions of domain/intent and slots. The
proposed method obtains new state-of-the-art results on ATIS and
improved performances over baseline techniques such as conditional
random fields (CRFs) on a large context-sensitive SLU dataset.

Index Terms— Recurrent Neural Networks, Convolution Net-
works, Spoken Language Understanding

1. INTRODUCTION
A Spoken Language Understanding (SLU) system consists of domain
identification, intent classification and slot filling [1]. SLU is a crit-
ical component in spoken dialogue systems. SLU usually processes
an input query in a sequential way; it firstly identifies the domain
of a query, then classifies its intent and lastly extracts semantic slots
from the natural language query. For example, a query of “I want
to fly from Seattle to Paris,” should be classified as having an inten-
tion of ”Departure” in the domain of ”Flight”. The word “Seattle”
should be labeled as the departure-city of a trip, and “Paris” as the
arrival-city.

SLU has been extensively studied in recent years. Domain iden-
tification, intent classification, and slot tagging are usually modeled
separately. Therefore, perhaps the most obvious approach to SLU is
treating both domain and intent detection as classification problems
using Support Vector Machines (SVMs) [2], and using sequence la-
beling methods such as Conditional Random Field (CRF) [3] for slot
tagging task that assigns each word in the query with a slot label.

In a contextual SLU, users interact with the system via a se-
quence of consecutive natural language queries. Each query has its
intra-session history information from previous queries, associated
with their previously predicted domains, intents and slot labels. An
example of a user session consisting of 5 queries/turns is as follows:

In this example, the user starts with weather queries of two cities,
then asks for route information of the second city. The user finally
asks for setting up an alarm clock with a specific time. It would be
ambiguous to SLU if the history information of domain, intent, and
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query domain intent
T1: what is the weather in Nanjing weather check weather
T2: how about Shanghai weather check weather
T3: how can I go to Shanghai places get route
T4: set an alarm for me alarm set alarm
T5: seven o’clock in the morning alarm set alarm

slot labels are ignored, especially for queries T2, T3, and T5; the
features extracted from current query are insufficient for statistical
models to make an accurate judgment. For example, “seven o’clock
in the morning” can have different domain/intent interpretations such
as ”set alarm” or ”time”. It is shown in [4, 5] that these context
information are useful to improve system performance on domain
classification.

In recent years, Recurrent Neural Network (RNN) has demon-
strated outstanding performance in a variety of natural language pro-
cessing tasks [6–14]. In common with feed-forward neural networks
[15–19], an RNN maintains a representation for each word input as
a high-dimensional real-valued vector. In this vector space, simi-
lar words tend to be close with each other, and relationships between
words are preserved [20]; thus, adjusting the model parameters to in-
crease the objective function for a training example which involves
a particular word tends to improve performance for similar words
in similar contexts. RNN, however, differs from the Feed-Forward
Neural Networks in that RNN has a recurrent connections of hidden
layer activities. Therefore, the current hidden layer activities incur
memories of the past activities. This may make RNN particularly
suitable for sequence labeling tasks such as slot filling, in which
RNN has demonstrated outstanding performances on some bench-
mark tasks [12].

In this paper, we propose a RNN-based SLU approach to joint
training of domain identification, intent classification and slot fill-
ing for contextual SLU. The RNN in our method performs slot fill-
ing tasks. Its features are however jointly trained for both slot fill-
ing and domain/intent assignment. A Convolution Neural Network
(CNN) [21] is placed on top of features extracted from a step-n-gram
model, which extracts sentence-level features from sequential hid-
den layer activities from RNN. One obvious advantage of the pro-
posed approach is that it can jointly train neural networks param-
eters. In contrast, conventional methods for SLU trains model do-
main/intent classification and slot filling separately. Another advan-
tage of the proposed method is that the context information, includ-
ing domain/intent assignment and slot tagging from the past predic-
tions, are incorporated.

2. RELATED WORK

Due to its simplicity and robustness, Support Vector Machine with
linear kernel (linear SVM) [2] has been widely used for domain and
intent classification. Recently, Neural Networks and Convolution
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Neural Networks have also been applied to domain classification and
intent detection [5,22–25]. A linear SVM may be considered shallow,
in comparison with the neural network based models.

Conditional Random Field (CRF) [3] has been extensively used
for slot filling. Recently NN-based technologies [22,26,27] and RNN-
based methods [12, 28–30] have been successfully used on the task.
The RNN-based method achieved the state-of-the-art performance on
some datasets such as ATIS [29, 31]. Our work in this paper further
advance the state-of-the-art by joint training of slot filling with the
task of domain/intent classification.

The joint training is related to multi-tasks learning [26]. Re-
cently, [4, 25] have investigated joint modeling of intent detection
and slot filling. This paper further their works by incorporating the
contextual information from the predictions of domain/intent clas-
sification and slot filling of the previous queries. When slot la-
bels are not available, we train language models as replacements.
This achieves semi-supervised training of parameters in our method,
which is also discussed in [26]. Therefore, our method can make use
of unlabeled data to potentially improve the performance of SLU. Al-
though we mainly focus on using language models as complements
to slot filling models, the method can be used for other SLU tasks.

We proposed a step-n-gram model to extract sentence level fea-
tures. The closest work is a recent method for sequence-to-sequence
mapping [32], which uses the last hidden layer activities of RNN for
initialization the hidden layer activities of the output sequence. The
step-n-gram model is not restricted to the last hidden layer activities,
and the exact location is optimally selected via max pooling and
maximizing objective functions. The order of step-n-gram model
can be increased so that certain sentence-level features are extracted
from sequential features with certain time resolutions.

Recently, Xu and Sarikaya [25] have studied joint training of
domain identification, intent classification and slot filling. Their ap-
proach uses the triangular CRF [33] that has additional variables in-
dicating the domain/intent assignment of the query. Joint training is
achieved via modeling the dependency between the the newly intro-
duced variables and the hidden slot labelling sequence. Another nov-
elty is using Convolutional Neural Networks (CNNs) [21] to extract
features. Our work differs from theirs in using RNN, incorporating
contextual information, and using step-n-gram models for extracting
sentence-level features.

3. RECURRENT NEURAL NETWORK BASED JOINT
TRAINING

The proposed approach is illustrated in Fig. 1. The bottom part of
the figure in a dash round square illustrates a slot filling model using
RNN. The output layer yi ∈ RK produces a probability distribution
over possible semantic labels at position i. K is the number of labels.
The hidden layer si ∈ RD maintains a representation of the sentence
history. D is the hidden layer dimension. The input vector wi ∈ RN

has a dimension equal to the vocabulary size N . The values in the
hidden and output layers are computed as follows:

si = σ (Uwi +Wsi−1) (1)
zi = Vsi, (2)
yi = g (zi) , (3)

where

σ(z) =
1

1 + e−z
, g(zm) =

ezm∑
k e

zk
. (4)

and U, W and V are the connection weights.
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Fig. 1. RNN based contextual SLU.

An original contribution of this work is the introduction of con-
volution layers that summarize the hidden layer activities from RNN.
The convolution operations in [5, 26] are on top of feed-forward NN
layer activities that capture the local observations. In contrast, the
RNN here captures sequential and sentence level information in the
hidden layer activities. Specifically, the hidden layer activities of
the last word incurs a memory of hidden layer activities from the
previous word instances. Instead of directly using the last hidden
layer activity [32], we use max pooling over all of the RNN hidden
layer activities. The exact location that has the maximum hidden
layer activities is therefore decided via optimizing an objective dur-
ing training and is selected based on the learned parameters during
test. Our method is therefore less ad-hoc as [32]. We plan to conduct
further works, possibly on other tasks, to understand its benefits.

We further introduce a concept of step-n-gram max pooling. The
“p(1)” is a step-1-gram max pooling that takes all of the hidden layer
activities. The “p(i)” is the step-i-gram max pooling that skips i−1
hidden layer activities. Using step-n-gram max pooling, each convo-
lution operation generates a fixed dimension feature vector to sum-
marize the hidden layer activities in a certain time-resolution. The
step-i-gram max pooling has the same or lower time resolution than
the step-j-gram max pooling for j ≤ i. The step-1-gram max pool-
ing has the highest resolution. Usually, we use a committee of step-
1-gram to step-3-gram max pooling.

Together with a feature vector that encodes a bag-of-word fre-
quency, these step-n-gram max pooling activities are fed into NN
layer. The bag-of-word frequency feature vector has a dimension of
vocabulary size. Each element represents the frequency of occurring
a particular word in the current query. The hidden layer activation
function in the NN is the sigmoid activation function; i.e.,

f = σ

(
L∑

i=1

Gip
(i) +Gx

)
(5)

where L is the maximum order for step-n-gram and x is the bag-of-
word feature vector. Gi and G are weight matrices.

The domain identification and intent classification use fully con-
nected neural networks and use features from the step-n-gram mod-
els. The contextual information is introduced with the use of the
past predictions of domain/intent in the last turn. These past pre-
dictions are represented as dash arrow curves in the figure. During
training, we use the ground-truth of domain/intent assignment of the
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last turn, but use the predictions during test. This training scheme
is also called teacher forcing [34] that usually leads to fast training
and may serve as a corrective mechanism during training. The multi-
nomial distribution of these classification is obtained using softmax
activation function; i.e.,

d = g
(
Df + D̂d̂

)
, (6)

o = g
(
Of +Hd+ Ôô

)
(7)

where d ∈ RP and o ∈ RQ each denotes the domain and intent
classification vector. d̂ ∈ RP and ô ∈ RQ each denotes the pre-
vious query domain and intent classification vector. P and Q each
denotes the number of domains and intents. D and O are the corre-
sponding weight matrices from NN layer to domain and intent output.
D̂ and Ô represent weight matrices from previous domain and intent
output to current domain and intent output. H is the weight matrix
from domain output to intent output.

In the proposed RNN based SLU illustrated in Fig 1, there are two
hidden layers. The top one is shared by domain and intent classifi-
cation. The other one is the hidden layer of the bottom RNN that is
shared by domain/intent classification and slot labeling. The model
size and modeling capability are mainly determined by the size of
the RNN hidden layer. Its optimal dimension is dependent on the
training data size. Usually, larger vocabulary data requires bigger
RNN dimension to have better performance. The dimension of the
top level NN layer is mainly determined by the domain and intent
label size.

The training uses maximum likelihood criterion and iteratively
trains NN and RNN parameters for the joint domain/intent classifi-
cation and slot labeling. It firstly applies forward computation to
predict domains and obtains NN and RNN error signals via back-
propagation. With the updated parameters, the training procedure
then predicts intents and obtains NN and RNN parameters from intent
classification errors. Finally, it updates RNN parameters using error
signals from predicting slot labels. Notice that the RNN is updated
from error signals in domain/intent classification and slot labeling.
The NN is updated from errors signals in domain/intent classifica-
tion, but is dependent on RNN activities. Therefore, NN and RNN are
jointly trained for the three tasks. We use AdaGrad [35] to control
the learning rate during training. During test, we apply the proposed
SLU in the same way as the standard pipeline. It classifies query
domain first, then does intent classification, followed by slot filling.

4. EXPERIMENT

4.1. Data

In this paper, two sets of experiments are carried out to evaluate the
proposed SLU method. The first uses ATIS dataset [29, 31]. This
dataset is about air travel domain with 22 different intents. There are
893 utterances for testing (ATIS-III, Nov93 and Dec94), and 4978
utterances for training (rest of ATIS-III and ATIS-II). Each word is
labeled with one semantic slot. There are 127 slots and 899 unique
words. Two types of features can be used on ATIS. The first is the
lexicon and the second is the named entity (NE) feature.

ATIS is a single turn data set that doesn’t include history turn
information. In order to evaluate performances of the proposed con-
textual SLU in a context-sensitive setup, we conducted the second
set of experiments on an internal data set which was derived from
Microsoft Cortana live log data. There are 9 domains, which are
alarm, calendar, communication, note, ondevice, reminder, weather,

places and web. The data set has 112 intents and 71 slots including
null (nothing) slot. Training consists of 67,818 queries and 23,823
sessions. Testing set has 6,905 queries and 2,644 sessions.

4.2. Training procedure

Instead of using a validation data set to monitor training progress,
we use fixed numbers of iterations. On ATIS data set, the maximum
iteration number is set to 50. On the Microsoft Cortana live data,
the maximum iteration number is set to 10. Learning rate is adjusted
using AdaGrad [35]. The initial learning rate is set to 0.05 on ATIS
data and 0.1 for Microsoft Cortana live data. In both sets of exper-
iments, the RNN hidden layer size and NN hidden layer size are set
to 100 and 50, respectively. A committee of step-1-gram to step-3-
gram max pooling is used to extract query level embedding vectors
from RNN hidden layer activities.

4.3. Single Turn Spoken Language Understanding

methods feature error rate
SVM lex+3gram 5.7
SVM (lex+NE)+3gram 5.6
SVM lex+2gram 4.4
SVM (lex+NE)+2gram 4.4
intent+lm lex 7.4
intent+lm lex+NE 5.7
intent+slot lex 7.2
intent+slot lex+NE 4.8
intent+slot+lm lex 7.2
intent+slot+lm lex+NE 4.6

Table 1. Error rates for intent classification by different methods
on ATIS. The baseline is SVM. ’intent’ stands for training intent
classification. ’lm’ stands for training language model. ’slot’ stands
for training slot filling. ‘lex’ stands for lexicon feature. ‘NE’ stands
for name entity features. ‘3gram’ means the model use unigram,
bigram and trigram features.

We conducted experiments on the ATIS dataset to show the ef-
fectiveness of joint training. Table 1 reports the error rate for intent
classification. The baseline is the linear SVM, which achieves the
lowest error rate of 4.4% using lexical, named entity (’NE’), and
bigram features (’2gram’). Using trigram (’3gram’) feature doesn’t
improve performances, probably due to overfit. The proposed
method of joint training of intent classification and slot labeling
using lexicon and named-entity feature achieves 4.8% error rate,
which is worse than the linear SVM. However, error rate can be
reduced to 4.6% by additionally joint training of language models.

Table 2 reports slot filling performances measured in F1 score
using the proposed RNN-based joint training method, in comparison
to the published results using CRF, RNN, Long Short-Term-Memory
(LSTM) [28] and Recurrent Conditional Random Field (RCRF) [29].
The highest F1 score with lexicon feature only is achieved us-
ing LSTM neural networks with 3 order moving average (LSTM-
ma3) [28]. The proposed joint training of intent classification and
slot filling method achieved 94.63% F1 score, which is close to
94.92% by LSTM-ma3, and preforms better than the conventional
RNN based slot filling models [12]. Using the additional name en-
tity (’NE’) features, the proposed joint training method using RNN
achieved a new state-of-the-art F1 score of 96.83%.
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model feature F1(%)
CRF [36] lex 91.09
RNN [12] lex 94.11
CRF [37] lex 94.40
RNN joint (this work) lex 94.63
LSTM [28] lex 94.85
LSTM-ma3 [28] lex 94.92
CRF [38] lex+NE 95.00
RNN [12] lex+NE 96.60
RCRF [29] lex+NE 96.46
RNN joint (this work) lex+NE 96.83

Table 2. F1 score (in %) for slot filling on ATIS achieved by different
methods using lexicon (’lex’) and name entity (’NE’) features.

4.4. Contextual Spoken Language Understanding

Microsoft Cortana Live log data has context information in each
query. Table 3 reports the domain identification error rates. For
comparison, it also includes linear SVM results. To use the domain
labels from the previous turn, we use a method proposed in [5] that
applies a product feature to model the joint effect of the previous do-
main label and current turn n-gram features. This method is shown
to outperform that using the previous labels directly [5].

Without contextual information, RNN based joint training (’sin-
gle RNN joint’) obtained 10.5% classification error rate, a 13% rela-
tive error rate reduction compared to 12.1% by the linear SVM (’sin-
gle SVM +3gram’). If using true domain assignment of the previous
turn (’multi RNN joint’), the proposed method obtained the lowest er-
ror rate of 5.4%, a 23% relative error rate reduction compared against
SVM using true domain assignment of the previous turn (’multi SVM
+ 3gram’). However, this gain is reduced to 3% (not statistical sig-
nificant) when using predicted domain of the last turn.

model true predicted
single SVM +3gram 12.1 12.1
single RNN joint 10.5 10.5
multi SVM +3gram 7.0 10.3
multi RNN joint 5.4 10.0

Table 3. Error rate for domain identification on Cortana live log
data. SVM and RNN use joint training under single turn and contex-
tual multi-turn situations. ‘true’ column lists the results using true
domain identification of the previous turn. ‘predicted’ list the results
using predicted domain identification.

Table 4 reports intent classification error rate of the proposed
methods. In practice, a domain dependent intent classifier is used to
detect the intent of the query after a domain label is determined. To
simplify the comparison, all the models in Table 4 are based on true
domain information. We observed that using contextual information,
in particular, the intent classifications from the past turn, reduced er-
ror rate of the current turn. For example, classification error rate
by RNN (’multi RNN joint’) is reduced to 5.0% from 7.2% with true
intent classification of the past turn. In general, using predicted in-
tents from the past turn has smaller gain than using true intent of
the past turn. Nevertheless, the relative error rate reduction is 19%,
from 7.2% by ’single RNN joint’ down to 5.8% by ’multi RNN joint’.
Compared to SVM with the predicted intent from the past turn (’multi
SVM + 3gram’), the relative error rate reduction is 2% that is not sta-
tistical significant.

model true predicted
singleSVM +3gram 6.9 6.9
multiSVM +3gram 4.8 5.9
single RNN joint 7.2 7.2
multi RNN joint 5.0 5.8

Table 4. Error rate for intent classification on Cortana live log data.
SVM and RNN use joint training under single turn and contextual
multi-turn situations. ‘true’ column lists the results using true in-
tent assignment of the past turn. ‘predicted’ lists the results using
predicted intent classification.

Table 5 presents F1 scores of the slot filling results using the pro-
posed RNN-based joint training method, together with results from
CRF, RNN and RCRF [29] under the condition that the true domain
information is available for each query. On average of 8 domains,
RCRF achieves 93.2% F1 score, better than those by RNN and CRF.
Given domains, the proposed method does joint training of intent
classification with slot filling. Shown in Table 5, the joint train-
ing method (’m-RNN’) improves F1 score to 94.0% with contextual
information (’m-RNN’). Without contextual information, the joint
training method (’s-RNN’) achieves 93.9% F1 score that outperforms
CRF, RNN, and RCRF.

domain size CRF RNN RCRF s-RNN m-RNN

alarm 3815 93.2 93.8 93.9 95.9 94.9
calend 4137 93.7 95.2 95.9 95.5 96.4
commun 9550 91.6 92.5 93.2 93.1 92.9
note 828 76.5 77.0 76.9 80.3 74.9
ondevi 4383 98.2 98.4 98.8 98.4 98.6
places 6166 87.5 88.4 88.3 89.6 90.6
remind 5258 93.3 90.5 91.9 92.2 92.4
weathe 8269 95.7 95.0 94.6 96.3 96.7
avarage 92.6 92.8 93.2 93.9 94.0

Table 5. F1 score (in %) for slot filling on Cortana live log data. For
comparison, CRF, RNN and RCRF results are listed. ‘domain’ column
lists all of the tested domains. Column ‘size’ reports the number
of utterances in each domain. ‘s-RNN’ stands for single turn RNN
using joint training. ‘m-RNN’ stands for multi-turn RNN using joint
training and contextual information. The bottom row of ‘average’
reports the average F1 scores weighted by the size of domain.

5. CONCLUSION

We have presented a contextual SLU method that jointly optimizes
domain/intent classification and slot filling. This method exploits
the context information from the predictions of domain and intent
of the past query in a session. Our method uses Recurrent Neural
Networks to extract sequential features. On top of the feature, we
use a novel step-n-gram model that extracts sentence-level features.
We use Convolution Neural Networks for domain and intent classi-
fication. We have conducted experiments on the widely used ATIS
dataset and obtained new state-of-the-art result for slot filling. In a
multi-domain multi-turn contextual spoken language understanding
task, the proposed method improves performances over alternative
methods. We plan to conduct future research to use more flexible
network structures for contextual SLU.
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