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ABSTRACT

The paper presents a method for converting word-based automatic
speech recognition (ASR) lattices into word-semantic (W-SE) lat-
tices that contain original words together with a partial semantic in-
formation – so-called semantic entities. Semantic entity detection
algorithm generates semantic entities based on the expert-defined
knowledge. The generated W-SE lattices have smaller vocabulary
and consequently reduce the sparsity of the training data. The for-
mat of the W-SE lattices also naturally preserves the inherent un-
certainty of the ASR output that can be exploited in subsequent di-
alog modules. The presented technique employs the framework of
weighted finite state transducers which allows for efficient optimiza-
tion of word-semantic lattices. We have evaluated the method in two
different spoken language understanding tasks and obtained more
than 10% reduction of concept error rate in comparison with using
1-best word hypothesis in both of those tasks.

Index Terms— Spoken language understanding, dialog sys-
tems, word-semantic lattices

1. INTRODUCTION

The spoken language understanding (SLU) module is a crucial part
of a spoken dialog system. The state-of-the-art dialog managers cur-
rently use statistical methods to maintain the belief state [1, 2] which
represents the probability distribution over all possible dialog states.
Such statistical methods can deal with the uncertainty of an ASR and
an SLU and effectively model the decision policy to solve possible
ambiguities in the belief state.

The ASR output is usually represented as a word lattice (acyclic
weighted finite state acceptor [3]). This paper presents a method for
preprocessing such word lattices before processing them in the SLU
module. The preprocessing algorithm identifies the semantic entities
in the input word lattice and replaces them with the corresponding
identifiers. Such preprocessing allows for better generalization in
the SLU module: for example the preprocessing could identify that
the input training utterance contains a date, a time and a person’s
name. Then the particular lexical realization of those entities is ir-
relevant for the statistical-based SLU and the SLU model can better
generalize in the case when the new (unseen) input contains the same
entities but expressed with different words.

The key idea of this paper is the integration of the semantic entity
detection algorithm [4] into a statistical SLU model. This allows
us to incorporate the expert knowledge into the statistically trained
model. The preprocessing of SLU training data with some algorithm
which reduces the effect of the data sparsity could be found in most
SLU models [5, 6, 7, 8]. In the STC model (Mairesse et. al. [6]) the
input words matching the domain database values are replaced with
corresponding category labels. The LUNA framework [5] uses local

regular grammars to identify local concepts in the input word lattice.
The other methods use finite state transducers (FST) to identify local
semantic concepts in input word lattices [7, 8]. By using FST the
model must deal with ambiguities in the parsed output. For example
the utterance “at ten past three” could be decoded as two valid times
“at ten” or “at ten past three” if the part “past three” is optional in the
local grammar. The ambiguity could be solved by a greedy approach
[6] or by using statistical methods, e.g. HMM tagger [5].

Another issue is the ability to parse the uncertain ASR output.
The uncertainty is usually expressed in the form of word lattices or
word confusion networks. It has been shown that the uncertain ASR
output improves the SLU performance [9, 10, 7]. While the word
confusion networks are simpler for further processing and achieve
lower oracle word error rates, they model the posterior probabilities
of longer word sequences imprecisely [4]. The general structure of
word lattices leads to higher computational demands during process-
ing [9].

Semantic entity detection (SED) algorithm generates semantic
entities based on the expert-defined knowledge to model the domain
semantic entities (SEs) of common types (e.g. times, dates, names)
[4]. The ambiguities in the SED process are solved using the integer
linear programming (ILP) and the result is used to convert the word
lattices into a generalized word-semantic (W-SE) lattices. Such W-
SE lattices are then used in the statistical SLU model. The use of
ILP allows us to define more strict rules for ambiguous or overlap-
ping matches of local concepts than the simple finite state transduc-
tion. The method effectively combines the expert knowledge with
the power of statistical learning. We use the theory of rational ker-
nel functions [11, 12] to directly classify the W-SE lattices in the
SLU model. This model is represented by a hierarchical discrimina-
tive model (HDM) [13] which is an extension of the Semantic Tuple
Classifiers (STC) model [6].

The application of W-SE lattices in the SLU is described in the
following sections. Sec. 2 introduces the ILP-based semantic entity
detection, Sec. 3 describes the HDM model, Sec. 4 presents the
method of generating the W-SE lattices. Sec. 5 shows the experi-
mental results and Sec. 6 concludes the paper.

2. SEMANTIC ENTITY DETECTION

From the point of view of the SED algorithm the semantic entity
(SE) is virtually a named entity with semantic interpretation as-
signed. Each SE consists of a type (e.g. time, date, names) and
semantic tags used to describe the SE meaning. Semantic tags are
also used to convert the lexical realisation of SE into a “computer
readable” representation of the SE. In this approach each SE type
is represented by separate CFGs. This assumption is not limiting,
because the structure of many SE types is fixed and well-known.
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Therefore the CFGs can be defined by an expert in a given domain
or they can be generated automatically from the domain database.

In almost every modern speech recognizer the ASR lattices are
a by-product of the Viterbi decoding. In this paper we use the lattice
preprocessing method adapted from [14] to convert the raw ASR
lattices into the form of a weighted finite state transducer (WFST).
Alternative solution is to use a WFST-based decoder and generate
the lattices directly [3].

Each type of semantic entity z has a corresponding CFG Gz .
The grammars describing the semantic entities are non-recursive and
therefore they can be converted into unweighted finite state trans-
ducers Tz without the need for an approximation. The grammars are
designed in this way: the input side of the transducer Tz represents
terminal symbols of the CFG Gz and the output side provides the
interpretation of the corresponding path in Tz .1

For illustration, consider a sequence of words ten past three.
Let’s suppose that this sequence represents time information and
we use the transducer Ttime created from the corresponding gram-
mar Gtime. Thereafter the output semantic interpretation can be
time:10:p:3 and the corresponding machine representation 3:10 pm.
Naturally, there is usually more than one semantic entity type z in the
real tasks. The complete expert knowledge about the task’s semantic
(the FST Z) is then represented by the union [16] of all individual
Tzs, i.e. Z =

⊕
z Tz .

The process of generating the semantic interpretation is imple-
mented by using a transducer composition algorithm [16, 17]. This
approach has the advantage that it can be easily extended to the case
where the input is the ASR lattice. There is also an optimized im-
plementation of WFST composition [17]. At the same time it has
some disadvantages: (1) we need to model all possible symbol se-
quences including meaningless words [7], (2) there could be ambigu-
ities in the semantic entity assignment, (3) the given part of the utter-
ance could have assigned multiple semantic representations, which
is caused by the uncertain ASR hypotheses.

The solution of these problems was suggested in [4]. The issue
(1) was solved by applying the approach of a factor automaton [18].
The factor automaton of a WFST represents a set of all paths and
subpaths of the WFST. Therefore the subpaths containing meaning-
less words (i.e. words which are not among the terminal symbols
of any Gz) are silently ignored during the composition of the factor
automaton and the FST Z. Only the subpaths which bear the mean-
ing according to the set of Gzs are processed. The problems (2) and
(3) are solved by applying the heuristics of maximum unambiguous
coverage [4], which can be converted to an optimization problem
solvable using the integer linear programming (ILP). The solution of
the ILP leads to a disambiguated set of semantic entities.

Now assume that U is a weighted finite state acceptor (WFSA)
representing an ASR lattice and Z corresponds to compiled SE
grammars in the form of an unweighted FST. The complete SED
algorithm consists of the following steps: (1) convert WFSA U to
WFST UT by placing unique identifiers i to an input label of each
transition in U , (2) create the factor automaton F (UT ), (3) compose
F (UT ) ◦ Z and (4) define and solve the ILP optimization to obtain
the set F∗ of unambiguous semantic entities.

Let K(UT ) andW denote the set of input and output labels of
UT , respectively. The assignment of unique identifiers can be ex-
pressed as a mapping i = id(w) where i ∈ K(UT ) is an unique
identifier and w ∈ W is the output symbol (i.e. word) assigned to a
transition with identifier i in UT . Since id(·) is a bijective mapping,

1The output labels correspond to CFG tags as specified in the
W3C Speech Recognition Grammar Specification (SRGS) [15].

the inverse mapping exists and will be denoted as w = id−1(i).
Given an arbitrary ordering, the i-th item of the set F∗ is the

triplet (yi, ui, P i) where: yi is a semantic entity, i.e. the SE type and
SE interpretation tags, for example time:10:p:3, ui is a sequence of
unique transition identifiers from UT ; ui = (1, 5, 8) says that the SE
yi is assigned to transitions with identifiers 1, 5 and 8 in UT . These
transitions form a subpath of UT , and P i is a posterior probability
of the semantic entity yi.

The probabilities P i are computed from the weights of UT and
the semantic entity detection does not modify these weights. The
posterior probability of the semantic entity is equal to the posterior
probability of the underlying lexical realization in the lattice U .

Given the setF∗ we can construct the lattice of semantic entities
as was described in [4]. Such lattice is useful in dialog management
to distinguish between the following two cases (assume the lattice
contains two semantic entities SE1 and SE2): (1) SE1 and SE2 are
alternative hypotheses based on different ASR hypotheses or (2) the
user uttered first SE1 and then SE2.

3. HIERARCHICAL DISCRIMINATIVE MODEL

This section describes the Hierarchical Discriminative Model
(HDM) introduced in [13]. The description of HDM uses the termi-
nology of feed-forward neural networks – the input layer computes
lexical features, the hidden layer transforms these features into a
new feature space. The output layer then predicts lexicalized proba-
bilities. The probabilities are used to parameterize the generalized
probabilistic context-free grammar (PCFG). The symbols used in
this PCFG correspond to the set of domain-dependent semantic con-
cepts. These concepts represent the atomic units of semantics im-
portant in the given task – for example TIME, STATION, ACCEPT,
CREATE etc.

The features generated by the hidden layer correspond to the
presence or absence of a given semantic concept or concepts in the
predicted semantic tree. For example, one feature can represent
the presence/absence of the pair ACCEPT-STATION, another fea-
ture root-TIME etc. The hidden layer is equal to the Semantic Tuple
Classifiers (STC) model introduced in [6]. It uses support vector ma-
chines (SVMs) with kernel values computed in the input layer. The
predictions of these classifiers are not directly used – the distance to
the decision boundary is used as an input of the output layer. The
output layer employs a set of multi-class SVMs and uses the feature
vector computed in the hidden layer to predict expansion probabili-
ties of the PCFG. The rules of the PCFG are inferred from training
data.

The structure of HDM is fully discriminative – it models directly
the posterior probability distribution. In experiments presented in
[13], the HDM outperforms both the generative model (Hidden Vec-
tor State parser [19]) and the discriminative model (STC). Moreover
the parameters of the input layer are encoded using the weighted
finite state transducer (WFST). The computation of the SVM ratio-
nal kernel function values uses WFST operations [11] over a set of
training lattices. We developed a method based on the factor automa-
ton [12] to speed-up the computation of the rational kernel function
values. By using this method, it is possible to compute the vector
of 20k kernel function values in times of the order of milliseconds.
Computation of rational kernel functions is defined using the WFST
operations such as composition or ε-removal. Then, the HDM is
able to process many input structures such as one-best hypotheses,
word lattices or phoneme lattices [20]. In this paper we will use this
feature of HDM to train the SLU model on the W-SE lattices which
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combine the lexical units (words) and the semantic units (semantic
entities).

4. WORD-SEMANTIC LATTICES

This section presents an extension of semantic entity lattices (Sec.
2). The idea is to process the ASR lattice and replace the subpaths in
the lattice corresponding to a semantic entity with the SE interpreta-
tion. All other transitions in the original ASR lattice are unchanged.
The transitions in the word-semantic lattice are labelled with the mix
of the original words from ASR lexicon and the symbols represent-
ing the SE interpretations (see Fig. 1.c).

To construct the word-semantic (W-SE) lattice from the lattice
U , the set of all semantic entities F∗ has to be computed. For the
construction of the W-SE lattice we will reuse the intermediate result
of the SED algorithm – the WFST UT which is labelled with input
symbols unique to each transition. Given the setF∗ we can construct
the mapping transducer M which transduces the sequence of such
unique identifiers to some symbols xi (see Sec. 4.1). The input
alphabet of M is K(UT ) and the output alphabet S. The next step is
to compose the mapping transducer with the input lattice:

C = invert (M) ◦ UT (1)

The operator invert represents a WFST inversion (swapping input
and output labels on each transition). This is because the input al-
phabet of M is K(UT ) which must be matched with the input al-
phabet of UT . After performing the composition, the input side of
the transducerC is virtually the word-semantic lattice and the output
side is the source word lattice. The way to obtain the word-semantic
latticeWSE is to projectC on the input side (Π1). Then the standard
set of WFST optimization algorithms is applied: ε-removal (rmeps),
determinization (det), minimization (min) and weight-pushing with
normalization of transition probabilities from the initial state to sum
1̄ (push) [16, 21]:

WSE = push min det rmeps Π1(C) (2)

The internal structure of WSE depends on the structure of the
mapping transducer M and the original lattice U .

4.1. Mapping transducer M

The mapping transducer M is an unweighted transducer with an in-
put alphabet K(UT ) and an output alphabet S. The mapping trans-
ducer is constructed for each lattice UT . First, the set K(UT ) is
divided into to two disjoint sets KE(UT ) and KW (UT ) such that:

KE(UT ) =
⋃

ui∈F∗

ui (3)

KW (UT ) = K(UT ) \ KE(UT ) (4)

The setKE(UT ) represents the unique identifiers of such transitions
in UT which have assigned an SE. The setKW (UT ) contains unique
identifiers of transitions which do not form any SE. Such transitions
will be preserved in the W-SE lattice with the original lexical sym-
bols (words).

The initial state s of the mapping transducer is also its final state.
For each identifier i ∈ KW (UT ) the transitions t is inserted into
M : origin and destination state of t is s, input symbol of t is i and
output symbol of t is a word given by id−1(i). This ensures that the
identifiers of transitions in UT not belonging to any SE are mapped
back to the original words (for an example see Fig. 1.b).

Fig. 1: (a) The word lattice with unique identifiers UT . The tran-
sition labels have the following structure. Assume Gtime so that it
assigns the following SEs toUT : time:10:p:3 (transitions 2, 3, 4) and
time:10:30 (2, 5). The SEs are typeset in boldface. (b) Correspond-
ing mapping transducer M for the full derivation. (c) The resulting
W-SE lattice, full derivation. (d) The resulting W-SE lattice, type
derivation.

For the i-th semantic entity from F∗ the new path πi in M is
created. The sequence of input labels of πi is equal to ui. The
sequence of output labels xi of πi is derived from yi. The origin
and destination state of πi is again the state s. We evaluated the
following four different derivations of xi from yi (in the following
examples assume that yi = time:10:p:3 and the corresponding word
sequence is ten past three):

• type derivation – xi is a single symbol corresponding to a SE
type of yi, e.g. xi = (time). This derivation is the most
general and retains only the information that the W-SE lattice
contains the specific SE types.

• typen derivation – xi is a sequence of numbered SE types,
the length of xi is the same as the length of ui, e.g. xi =
(time1, time2, time3). This derivation in addition to type
preserves the number of tokens corresponding to a given SE
in the W-SE lattice.

• split derivation – xi is a sequence of tags from which the SE is
composed, e.g. xi = (time, 10, p, 3). This derivation allows
us to distinguish between different interpretations of the SEs.

• full derivation – xi is a single symbol corresponding to whole
SE yi, e.g. xi = (time:10:p:3). This derivation uses the
specific SE as the W-SE lattice transition label.

The derivations above are sorted from the most general deriva-
tion (type) to the most specific derivation (full). By using different
derivations, the SLU model is able to select “the level of details”
retained in the W-SE lattices. More details preserved in the W-SE
lattice mean more parameters and the need for more examples in
order to train the SLU.

5. EXPERIMENTAL RESULTS

We used two semantically annotated corpora collected for SLU in
a spontaneous dialog system. The first one was the Human-Human
Train-Timetable (HHTT) corpus [22]. The corpus contains inquiries
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Table 1: Corpora characteristics.

HHTT TIA
# different concepts 28 20
# train sentences 5240 6425
# devel. sentences 570 519
# test sentences 1439 1256
ASR Vocabulary size 13886 42615
ASR Acc (Oracle Acc) 75.0% (84.6%) 77.9% (87.0%)

and answers about train connections. The second one was a Czech
Intelligent Telephone Assistant (TIA) corpus containing utterances
about meeting planning, corporate resources sharing and conference
call management. These corpora contain unaligned semantic trees
together with word-level transcriptions. We have split the corpora
into train, development and test data sets (approximately 72:8:20) at
the dialog level, so that the speakers do not overlap.

To evaluate the SLU performance we used the concept accuracy
measure [13] defined as

cAcc =
N − S −D − I

N
=
H − I
N

(5)

where H is the number of correctly recognized concepts, N is the
number of concepts in reference and S, D, I are the numbers of
substituted, deleted and inserted concepts. We used our in-house
LVCSR decoder to obtain the word lattices [23]. The recognition
accuracy and other characteristics of both corpora are summarized
in Tab. 1. The CFG grammars Gz for the HHTT task were collected
during the development of the knowledge-based spoken dialog sys-
tem [24]. In this task the following SE types were used: station, time,
date, train type. The grammars for the second task were partially
reused from the HHTT task (date and time) and two additional SE
types were introduced: name (first and last names in arbitrary order
and optional titles before and after the name) and resname (shared
company resources such as laptop or meeting room).

First the W-SE lattices for a specific type of derivation (type,
typen, split and full) were generated using the task grammars Gz .
Then, these lattices were used in the same way as ASR lattices dur-
ing the HDM model training and prediction. The metaparameters of
HDM were optimized on the development set. The results (concept
accuracy cAcc) on the test data are reported in Tab. 2.

This table shows that the use of W-SE lattices improves the con-
cept accuracy. The row W-SE 1-best shows the results for the case
where the best word hypothesis is converted to word-semantic hy-
pothesis using typen derivation for HHTT and split derivation for
TIA. These results are better than the results of HDM trained from
the best word hypothesis (without SEs), but worse than the results
for full W-SE lattices. The best results were achieved for the typen
derivation in the HHTT task and for split derivation in the TIA task.
The table shows that the achieved concept accuracy varies with the
level of details of the W-SE lattice. The low number of details and
also the high number of details lead to lower parsing performance.

The table also shows the results for two additional cases: (1)
SE completely removed from the W-SE lattices (row SE removed),
i.e. W-SE lattice contains just the transitions which do not belong
to any SE, and (2) the W-SE lattice consists only from SEs (row SE
only). The second case is equal to semantic entity lattices generated
by the SED algorithm. These two rows show that the word and SEs
are complementary – it is not possible to reach the performance of
the baseline with the use of just SE lattices or word lattices with
SE removed. Just the fusion of these two data sources leads to an
improvement in the concept accuracy of the HDM.

Table 2: Results of HDM trained on two different tasks. The results
should be compared with the baseline trained on the best hypothesis
(words 1-best) and on the word lattice (words).

Structure of HDM input HHTT cAcc TIA cAcc

words 1-best 73.96 81.96
words 74.90 83.55

W-SE 1-best 75.18 82.56
W-SE type 75.88 83.90
W-SE typen 76.67 83.87
W-SE split 75.77 84.40
W-SE full 69.36 82.24

SE removed 57.97 74.59
SE only 59.54 51.32

Table 3: Detailed results for specific semantic concepts. The follow-
ing measures for each semantic concept are shown: F-measure (F),
Precision (P) and Recall (R).

word lattice W-SE lattice

HHTT concept F P R F P R

TIME 93.0 93.0 93.0 93.5 93.1 94.0
TRAINTYPE 88.6 95.1 83.0 87.3 92.1 83.0
STATION 79.7 96.1 68.1 84.4 96.4 75.1

word lattice W-SE lattice

TIA concept F P R F P R

TIME 93.9 94.7 93.0 94.0 94.6 93.4
NAME 92.3 97.0 88.1 93.7 97.1 90.5
RES 80.8 87.1 75.3 86.8 93.0 81.5

The Tab. 3 shows the detailed results for semantic concepts
which relate to some SE. This table shows that the additional expert-
defined knowledge encoded in SE grammars improves mainly the
recall of these semantic concepts. By improving the prediction per-
formance for these concepts the overall concept accuracy is also im-
proved. This is caused by the use of semantic trees – the presence
of a parent concept influences the set of its child concepts and vice
versa.

6. CONCLUSION

The presented method generates combined word-semantic lattices.
The W-SE lattices are useful in the SLU task due to reduction of data
sparsity and uncertainty of the original ASR lattices. The presented
method was evaluated in the SLU framework. This framework em-
ploys the SED algorithm and the HDM model. The overall reduction
in the error rate is more than 10% for both of the tasks (best word
hypothesis vs. W-SE lattice) with the p-value of two-tailed t-test less
than 0.01. In comparison with the word lattices, the W-SE lattices
reduce 7.1% of errors for the HHTT task and 5.2% of errors for the
TIA task. This is mainly due to the improved concept recall caused
by the additional expert knowledge.
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Pascal Nocéra, “Conceptual decoding from word lattices: ap-
plication to the spoken dialogue corpus media,” in Proceedings
of International Conference on Spoken Language Processing,
Pittsburgh, 2006, pp. 1–4, ISCA.

[9] Dilek Hakkani-Tür, Frédéric Béchet, Giuseppe Riccardi, and
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