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ABSTRACT 

Probabilistic linear discriminant analysis (PLDA) has shown to 
be effective for modeling channel variability in the i-vector 
space for text-independent speaker verification. Speaker 
verification is a binary hypothesis testing. Given a test segment, 
the verification score could be computed as the log-likelihood 
ratio between a speaker-adapted PLDA and the universal PLDA 
model. This work proposes to infer the channel factor specific to 
each test segment and to include the channel estimate in the 
PLDA models, which essentially shifts the scoring function to 
better match that of the test channel. We also explore the 
influence of covariance adaptation in both speaker and channel 
adaptations. Experimental results on NIST SRE’08 and SRE’10 
dataset confirm that the proposed channel adaptation can be 
effective when the covariance is kept un-adapted, while the 
covariance adaptation is necessary in the speaker adaptation.  

Index Terms— speaker verification, PLDA scoring, speaker 
adaptation, channel adaptation 

1. INTRODUCTION 

Over the past few years, many approaches have been proposed 
to improve the channel robustness of text-independent speaker 
verification system [1, 2, 3, 4]. Among others, subspace model, 
like eigenchannel and joint factor analysis (JFA) [3, 4, 5 6], has 
shown to be extremely effective. Following the same framework 
as the JFA, the i-vector was proposed in [7] and soon became the 
mainstream front-end for speaker verification. An i-vector is a 
fixed-length representation of a speech utterance, which is 
typically of variable length. Furthermore, it has a much lower 
dimensionality compared to the mean supervector of a Gaussian 
mixture model (GMM) [5]. This allows channel compensation 
techniques, for instance, within-class covariance normalization 
[8], linear discriminant analysis (LDA) [9], and notably, the 
probabilistic LDA (PLDA) [10] to be applied effectively. This 
paper focuses on the use of PLDA in combination with i-vector 
for text-independent speaker verification.  

Speaker verification is a binary hypothesis testing problem, 
where a decision has to be made between two hypotheses – 
whether the enrollment and test utterances are from the same or 
different speakers [11]. With PLDA, the hypotheses test leads to 
a symmetric scoring function where the roles of the enrollment 
and test utterances are interchangeable [10, 11, 12]. In [13], it 
was shown that an equivalent form of scoring function could be 
derived by translating the verification problem to a likelihood-
ratio test between a speaker-adapted and the universal PLDA 

models, much similar to the speaker adaptation in the classical 
GMM-UBM paradigm. In [14], we used similar idea to handle 
multisession enrollment and showed that a better performance 
could be achieved using speaker prior derived based on the min-
imum divergence criterion. In a similar spirit to speaker adapta-
tion, we show how channel adaptation could be performed and 
the benefit of doing so in this paper. 

In i-vector space, we use PLDA to model the speaker and 
channel variability. The channel variability component plays a 
key role in providing the general distribution of the distortion 
due to the channel variation. At testing time, channel compensa-
tion is accomplished by factoring out the contribution of channel 
subspace in the scoring function [12]. All test segments are 
therefore scored under a common channel assumption, which is 
suboptimal. We propose to account for the specific channel con-
dition pertaining to each test segment by inserting the channel 
estimate to the PLDA model, resulting in a form of channel ad-
aptation. The objective here is to shift the PLDA model to match 
the test channel. This idea of channel adaptation has been the 
key element of the eigenchannel approach [5]. In this paper, we 
derive the channel adaptation formula for PLDA. We also inves-
tigate the impact of performing channel adaptation either with a 
full posterior distribution, or in part with only the posterior mean 
estimate, on the performance.  

The rest of this paper is organized as follows. Section 2 gives 
a brief review of i-vector and PLDA. In Section 3, we illustrate 
the concept of speaker adaptation with the help of graphical 
model. In Section 4 presents the theory of channel adaptation for 
PLDA. Experiment results are then presented in Section 5. Final-
ly, Section 6 concludes the paper. 

2. THE I-VECTOR PLDA PARADIGM 

The central idea of i-vector extraction is to find a fixed length, 
and usually reduced dimension, representations of variable-
length speech utterances [7]. The fundamental assumption is that 
the feature vector sequence  , extracted from an utterance, is 
generated by a session-specific GMM. The mean supervector m  
of the GMM is constrained to reside in the subspace T  with 
origin om , as follows 

 o= +m m Tw . (1) 

An i-vector is taken as the maximum a posteriori estimate of the 
latent variable w: 

 ( ) ( )oarg max | | 0,pφ = +
w

m Tw w I  . (2) 
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The low-rank matrix T  captures the total variability, which is 
usually understood to reflect both speaker and channel 
variabilities. An i-vector therefore represents the speaker and 
channel information both being conflated to a low-dimensional 
space.  

Channel compensation is applied on the i-vectors to suppress 
the channel effects. With PLDA, this is achieved by introducing 
two separate subspaces to segregate the channel variation from 
that of the speaker. In particular, PLDA assumes an i-vector 
extracted from the r-th session of speaker s is generated as 

 ( ) ( ), , , ,| , | ,s r s s r s r s s rp φ φ= + +h x μ Fh Gx Σ . (3) 

The vector μ  denotes the global mean of all i-vectors. The latent 
variable sh  accounts for the identity of a speaker while ,s rx  
represents the channel effects. The modelling capability of 
PLDA relies on the speaker and channel loading matrices 
denoted as F and G, respectively. We refer to the set 
{ }, , ,μ F G Σ  as the parameters of the PLDA model, which could 
be determined by fitting the model onto a given set of training 
data using the expectation maximization (EM) algorithm [9]. 
Details of training procedure used in this paper can be found in 
[12, 15]. 

3. IDENTITY INFERENCE WITH PLDA 

Let the prior over the latent variables h  and x  be a standard 
normal distribution ( ),0 I . By integrating out the the latent 
variables, the marginal density can be obtained as follows 

( ) ( ) ( ) ( )

( )T T

| , | 0, | 0,

| , .

p d dφ φ

φ

= + +

= + +

∫ μ Fh Gx Σ h I x I h x

μ FF GG Σ

  


 (4) 

From the above, it can be seen that a PLDA model is essentially 
a Gaussian distribution with a structured covariance model com-
prising of a speaker and a channel component. In particular, the 
term TFF  corresponds to the speaker variability and the term 

T +GG Σ  represents the channel variability.  

3.1 Hypothesis test 

In addition to channel compensation, PLDA serves as a means to 
derive the scoring function for the speaker verification task. 
Given a pair of i-vectors, one from the enrollment and the other 
from the test segment, the task is to determine whether they are 
from the same speaker or not. This question gives rise to the 
following hypotheses:     

 0 t s

1 t s

: and are from the same speaker
: and are from different speakers
φ φ
φ φ




 (5) 

where tφ  and sφ  are the i-vectors estimated from the test and 
enrolment segment, respectively. The log-likelihood ratio for the 
hypothesis test is 

 ( ) ( )
( )

( )
( ) ( )

t s 0 t s
t s

t st s 1

, ,
, log

,
p p

l
p pp

φ φ φ φ
φ φ

φ φφ φ
≡ =




, (6) 

where the likelihood terms are evaluated using the PLDA model 
in (4). Refer to [11, 12, 15] for the details of evaluating the log-
likelihood function. 
 

3.2 Speaker-adapted PLDA 

Using the chain rule, we replace ( )t s,p φ φ  with ( )t s|p φ φ ×  
( )sp φ  in (4). Cancelling out common term, we arrive at  

 ( ) ( )
( )

t s
t s

t

, log
p

l
p
φ φ

φ φ
φ

= . (7) 

The numerator in (7) could be further decomposed as  

 ( ) ( ) ( )s sp p p dφ φ φ φ= ∫ h h h , (8) 

where ( )sp φh  is the posterior distribution of the latent variable 
h  given the enrollment i-vector sφ . It could be shown (see [12] 
for details) that the posterior ( )1

s s s~ ,φ −h m L  is also Gaussian 
with mean  

 ( ) ( )
11 T T

s s sφ
−−= ⋅ + −m L F GG Σ μ , (9) 

and covariance 

 ( )
111 T T

s

−−−  = + +  
L F GG Σ F I . (10) 

Using (9) and (10) in ( )sp φh  and integrating out the latent 
variable, (8) is now given by 

 ( ) ( )1 T T
s s s,p φ φ φ −= + + +μ Fm FL F GG Σ . (11) 

Comparing (11) to (4), s+μ Fm  and 1 T T
s
− + +FL F GG Σ  are 

the mean and covariance which have been adapted to the target 
speaker. Using (11) and (4) in (7), the verification score 

 ( ) ( )
( )

1 T T
t s s

t s T T
t

,
,

| ,
l

φ
φ φ

φ

−+ + +
=

+ +

μ Fm FL F GG Σ

μ FF GG Σ




 (12) 

can therefore be interpreted as the log-likelihood ratio between 
the speaker-adapted PLDA and the universal PLDA model, in a 
way much similar to the idea of the universal background model 
(UBM) [2]. The major difference is that the PLDA model is 
adapted through the latent variable h  in the current case. Figure 
1 illustrates this idea in the form of graphical model. This inter-
pretation was first conceived in [13] and developed further in [14] 
to deal with the issue of multisession enrollment.    

4. CHANNEL-ADAPTED PLDA 

The columns of the channel matrix G represent the subspace 
where the unwanted channel variation correlates the most. In (9) 
and (10), channel compensation is imposed during the estimation 
of speaker parameters { }1s s, −m L  through the term TGG . In the 
scoring function (12), G  appears as a part of the covariance 
which models the speaker, channel and residual variability. As 
shown in Figure 1, test segments are scored under the same 
channel condition assuming a non-informative prior on the 
channel variable, i.e., ( )~ 0,x I . This is suboptimal as the 
channel characteristics of the test segments are generally differ-
ent, though we assume that the specific differences reside in the 
subspace span by the columns of the channel matrix G. 

4.2 Channel adaptation 

We propose to adapt the scoring function with respect to the 
specific channel characteristic of the test segment. This is ac-
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complished through the use of channel posterior tφx  
( )1

t t~ , −m L  estimated for each test i-vector tφ . More 
specifically, the posterior mean tm  and covariance 1

t
−L  are 

computed as follows: 

 ( )1 T 1
t t t sφ− −= ⋅ − −m L G Σ μ Fm  (13) 

 
11 T 1

t

−− − = + L G Σ G I . (14) 

In (13), sm  is obtained using (9) and (10). Following the same 
step as in Section 3, the channel and speaker adapted PLDA 
model could be obtained, as follows  

( ) ( ) ( ) ( )
( )

s t s t

1 T 1 T
s t s t

, | ,

,

p p p d dφ φ φ φ φ φ

φ − −

= + +

= + + + +

∫ μ Fh Gx Σ h x h x

μ Fm Gm FL F GL G Σ




 (15) 

while the channel-adapted PLDA model is 

 ( ) ( )T 1 T
t t t| | ,p φ φ φ −= + + +μ Gm FF GL G Σ . (16) 

Using (15) and (16) in (7), we obtain the scoring function being 
adapted to the channel characteristic of the test segment, as fol-
lows: 

 ( ) ( )
( )

1 T 1 T
t s t s t

t s T 1 T
t t t

,
,

| ,
l

φ
φ φ

φ

− −

−

+ + + +
=

+ + +

μ Fm Gm FL F GL G Σ

μ Gm FF GL G Σ




. (17) 

Similar to that of ( )1
s s s~ ,φ −h m L , the channel posterior 

( )1
t t t~ ,φ −x m L  resides in a subspace within the i-vector 

space. The channel adaptation is done through the latent variable 
tφx .  Figure 2 illustrates the idea in the form of graphical model. 

Notice that we use the subscript ‘s’ to indicates speaker adapta-
tion and the subscript ‘t’ to indicates channel adaptation specific 
to each to test segment. 

4.2 Necessity of covariance adaptation  

In the above, the adaptation of PLDA is executed in two steps. 
At enrollment time, the universal PLDA model is adapted 
through the speaker factor h  given an enrolment i-vector. This 
leads to the speaker PLDA model in (11). At test time, both 
speaker and universal PLDA models are first adapted to the test 
channel through the channel factor x . A verification score is 
then computed using (17). Notice that the mean adaptation ap-
pears in the form of shifting, while the covariance adaptation 
appears in the form of rotation subspaces.  

Previous study on GMM-UBM [2] and JFA [4] has shown 
that speaker characteristic is mainly reflected by the Gaussian 

mean vectors while the covariance matrices are not as necessary. 
Here, the speaker and channel adaptation could also be 
implemented without the covariance, i.e., using only the 
posterior mean estimate of the speaker and channel factors. It 
turns out that covariance adaptation is necessary for speaker 
adaptation while redundant for channel adaptation, as we shall 
show further in Section 5. 

5. EXPERIMENTS 

5.1 Dataset and system setup 

Experiments were conducted on the telephone-only trials of 
NIST SRE’08 and SRE’10. For SRE’08, we used common con-
dition (CC) 6 and 7 of the short2-short3 task. For SRE’10 we 
used CC 5, 6 and 8 of the core-core task. In all of these tasks, the 
enrollment and test utterances were recorded over telephone line 
(mobile or landline) using myriad types of handsets thereby 
posing a difficult challenge for channel compensation. Further-
more, the language variability in CC 6 of SRE’08 and the vocal 
effort variability in CC 5, 6, and 8 of SRE’10 make the speaker 
verification task become even more difficult, though we do not 
address the influence of these factors in the current paper. The 
performance was evaluated based on the equal-error-rate (EER) 
and the detection cost function (DCF) 

 ( ) ( ) ( )DET tar miss tar fa1C P P P Pθ θ= + − .  

We consider the minimum DCF at three different operation 
points, namely, DCF08, DCF10 and DCF12 [16, 17, 18 ].  

We used gender-dependent setup. Two UBMs consisting of 
512 Gaussians (with full covariance matrices) were trained with 
SRE’04 dataset. The acoustic features were 57-dimensional mel 
frequency cepstral coefficents (MFCC) with first and second 
derivatives appended. The total variability space, with 400 di-
mensions, was trained with the telephone data from SRE’04, 05 
and 06. The same set of data was used to train the speaker and 
channel subspaces, F and G, of the PLDA. The rank of the 
channel loading matrix G was set to 50, while the rank of speak-
er loading matrix F was 200. Length normalization and whiten-
ing [19] were used. We found that it is beneficial to include mi-
crophone data (drawn from SRE’05 and 06) to the residual as 

 T
mic mic← +Σ G G Σ . (18) 

The additional channel matrix Gmic was trained in a decoupled 
manner on top of Σ  and Gtel following the method as proposed 
in [20]. Note that for the posterior estimation of the channel 

sφh

tφ

h

tφ
10

tφx tφx

 
Figure 2: PLDA scoring with the latent variable x adapted to 
the channel characteristic of the test i-vector tφ . 

sφh

tφ

h

tφ

x x

10  
Figure 1: PLDA scoring using the speaker-adapted PLDA (left) 
and universal PLDA model (right). 
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variable, Gmic is not used. The scoring with only speaker 
adaptation as described in (12) is used as the baseline system. 

5.2 Results 

In the first experiment, we investigate the role of the posterior 
covariance in speaker adaptation of PLDA. Table I shows the 
results for the case where the full posterior was used for speaker 
adaptation (these serve as our baseline). This corresponds to the 
scoring function in (12). Table II shows the results when the 
posterior mean was used for speaker adaptation. More specifical-
ly, we set the posterior covariance 1

s
−L  to an identity matrix in 

(12) which essential reduces (11) to a mean only adaptation. 
Comparing Table I and II, we can see that the posterior 
covariance plays a significant role in speaker adaptation of 
PLDA model. The performance deteriorates significantly when 
only the mean estimate was used in place of the full posterior. 
We used full posterior in speaker adaptation for subsequent ex-
periments.  

Tables III and IV show the performance of channel adapta-
tion using full posterior and mean only estimate of the channel 
factor, respectively. In particular, we used the scoring function in 
(17) for the results in Table III. For the case of mean-only adap-
tation in Table IV, we set 1

t
− =L I  in the numerator and denomi-

nator of (17), which essentially switch off the covariance adapta-
tion. Comparing Table III and IV, it is clear that the use of poste-
rior covariance should be avoided for the case of channel adapta-
tion. Now, comparing the results in Table IV to the baseline in 
Table I, it is clear that channel mean adaptation of PLDA model 

improve the performance consistently across the five common 
conditions for both SRE’08 and SRE’10. This is also partially 
true even when the channel adaption is done using full posterior 
of the channel factor (comparing Table III and I).     

6. CONCLUSION 

We proposed the idea of channel adaptation for PLDA and 
showed that it could be accomplished through the use of the 
posterior distribution of the channel factor. Conventional PLDA 
scoring is suboptimal as the channel characteristics of test 
segments are generally different. By means of channel 
adaptation, we shift the PLDA model to match each test channel, 
which has shown to be critical in previous study in the context of 
eigenchannel GMM. We also showed that channel adaptation 
could be done in full, or in part using only the posterior mean 
estimate. Experimental results on SRE’08 and SRE’10 confirm 
that posterior covariance plays a significant role in speaker adap-
tation but not for channel adaptation. The results suggest that 
channel adaptation of PLDA model should be performed using 
only the posterior mean estimate of the channel factor with the 
covariance kept unchanged. 
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Table I: Results on CC6 and CC7 of SRE’08 and CC5, CC6 
and CC8 of SRE’10 with full posterior used for speaker adapta-
tion. 

 EER (%) DCF08 DCF10 DCF12 
Male  

CC6 (08) 4.6496 0.2462 0.7541 0.6300 
CC7 (08) 2.3246 0.1336 0.6903 0.4888 
CC5 (10) 3.0974 0.1548 0.4808 0.4031 
CC6 (10) 5.2442 0.3553 0.7360 0.6766 
CC8 (10) 0.8182 0.0699 0.2589 0.2156 
Female     

CC6 (08) 6.9085 0.3451 0.9906 0.8680 
CC7 (08) 3.3350 0.1543 0.9911 0.7018 
CC5 (10) 4.6418 0.2001 0.4930 0.4429 
CC6 (10) 9.1476 0.4441 0.8634 0.7962 
CC8 (10) 2.4027 0.0916 0.4264 0.3147 

 

Table II: Results on CC6 and CC7 of SRE’08 and CC4, CC6, 
and CC8 of SRE’10 with posterior mean estimate used for 
speaker adaptation (i.e., without covariance adaptation) 

 EER (%) DCF08 DCF10 DCF12 
Male  

CC6(08) 5.2303 0.2732 0.7655 0.6601 
CC7(08) 3.9787 0.1636 0.7973 0.5743 
CC5(10) 3.6514 0.1905 0.5913 0.4761 
CC6(10) 7.6213 0.3633 0.7809 0.7594 
CC8(10) 1.5697 0.0888 0.3513 0.2621 
Female     

CC6 (08) 8.1773 0.4061 0.9884 0.8777 
CC7 (08) 4.0699 0.2051 0.9899 0.7248 
CC5 (10) 4.8792 0.2378 0.6147 0.5342 
CC6 (10) 9.8644 0.4389 0.9180 0.8230 
CC8 (10) 2.2861 0.1058 0.5400 0.3882 

 

Table III: Results on CC6 and CC7 of SRE’08 and CC5, 
CC6 and CC8 of SRE’10 with full posterior used for both 
speaker and channel adaptations. 

 EER (%) DCF08 DCF10 DCF12 
Male  

CC6 (08) 4.6637 0.2436 0.7506 0.6263 
CC7 (08) 
CC5 (10) 
CC 6 (10) 
CC 8 (10) 

2.3319 
3.0140 
4.9446 
0.7849 

0.1314 
0.1498 
0.3482 
0.0663 

0.6811 
0.4723 
0.7247 
0.2589 

0.4820 
0.3981 
0.6653 
0.2108 

Female     
CC6 (08) 6.8662 0.3409 0.9906 0.8636 
CC7 (08) 3.2758 0.1502 0.9924 0.7036 
CC5 (10) 4.5800 0.1982 0.4958 0.4364 
CC6 (10) 9.0161 0.4432 0.8579 0.7958 
CC8 (10) 2.3270 0.0908 0.4097 0.2979 

 
Table IV: Results on CC6 and CC7 of SRE’08 and CC4, 
CC6, and CC8 of SRE’10 with full posterior used for speak-
er adaptation and posterior mean estimate used for channel 
adaptation (i.e., without covariance adaptation).  

 EER (%) DCF08 DCF10 DCF12 
Male  

CC6 (08) 4.6248 0.2390 0.7484 0.6195 
CC7 (08) 2.2562 0.1273 0.6629 0.4740 
CC5 (10) 2.8501 0.1504 0.4638 0.3898 
CC6 (10) 4.9482 0.3454 0.7247 0.6618 
CC8 (10) 0.7630 0.0624 0.2589 0.2108 
Female     

CC6 (08) 6.8009 0.3379 0.9911 0.8620 
CC7 (08) 3.2480 0.1471 0.9924 0.6999 
CC5 (10) 4.4000 0.1972 0.4823 0.4280 
CC6 (10) 8.9356 0.4347 0.8525 0.7834 
CC8 (10) 2.1974 0.0897 0.3762 0.2809 
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