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ABSTRACT
This paper presents a novel approach for enhancing the multiple sets
of acoustic patterns automatically discovered from a given corpus.
In a previous work it was proposed that different HMM configura-
tions (number of states per model, number of distinct models) for
the acoustic patterns form a two-dimensional space. Multiple sets of
acoustic patterns automatically discovered with the HMM configura-
tions properly located on different points over this two-dimensional
space were shown to be complementary to one another, jointly cap-
turing the characteristics of the given corpus. By representing the
given corpus as sequences of acoustic patterns on different HMM
sets, the pattern indices in these sequences can be relabeled consid-
ering the context consistency across the different sequences. Good
improvements were observed in preliminary experiments of pattern
spoken term detection (STD) performed on both TIMIT and Man-
darin Broadcast News with such enhanced patterns.

Index Terms— zero-resourced speech recognition, unsupervised
learning, acoustic patterns, hidden Markov models, spoken term de-
tection

1. INTRODUCTION

Supervised training of HMMs for large vocabulary continuous speech
recognition (LVCSR) relies on not only collecting huge quantities
of acoustic data, but also obtaining the corresponding transcriptions.
Such supervised training methods yield adequate performance in
most circumstances but at high cost, and in many situations such
annotated data sets are simply not available. This is why substantial
effort [1][2][3][4][5][6][7] has been made for unsupervised discov-
ery of acoustic patterns from huge quantities of acoustic data without
annotation, which may be easily obtained nowadays. For some ap-
plications such as Spoken Term Detection (STD) [8][9][10][11][12]
in which the goal is simply to match and find some signal seg-
ments, the extra effort of building an LVCSR system using cor-
pora with human annotations is very often an unnecessary burden
[13][14][15][16][17]. M ost effort of unsupervised discovery of
acoustic patterns considered only one level of phoneme-like acoustic
patterns. However, it is well known that speech signals have multi-
level structures including at least phonemes and words, and such
structures are very helpful in analysing or decoding speech [12]. In
a previous work, we proposed to discover the hierarchical structure
of two-level acoustic patterns, including subword-like and word-like
patterns. A similar two-level framework was also developed recently
[18]. In a more recent attempt [19], we further proposed a frame-
work of discovering multi-level acoustic patterns with varying model
granularity. The different pattern HMM configurations (number of
states per model, number of distinct models) form a two-dimensional

model granularity space. Different sets of acoustic patterns with
HMM model configurations represented by different points properly
distributed over this two-dimensional space are complementary to
one another, thus jointly capture the characteristics of the corpora
considered. Such a multi-level framework was shown to be very
helpful in the task of unsupervised spoken term detection (STD)
with spoken queries, because token matching can be performed with
pattern indices on different levels of signal characteristics, and the
information integration across multiple model granularities offered
the improved performance.

In this work, we further propose an enhanced version of the
multi-level acoustic patterns with varying model granularity by con-
sidering the context consistency for the decoded pattern sequences
within each level and across different levels. In other words, the
acoustic patterns discovered on different levels are no longer trained
completely independently. We try to “relabel” the pattern sequence
for each utterance in the training corpora considering the context
consistency within and across levels. For a certain level, the context
consistency may indicate that the realizations of a certain pattern
should be split into two different patterns, while the realizations of
another two patterns should be merged. In this way the multi-level
acoustic patterns can be enhanced.

2. PROPOSED APPROACH

2.1. Pattern Discovery for a Given Model Configuration

Given an unlabeled speech corpus, it is not difficult for unsuper-
vised discovery of the desired acoustic patterns from the corpus for
a chosen hyperparameter set ψ that determines the HMM configu-
ration (number of states per model and number of distinct models)
[2][4][5][6][20]. This can be achieved by first finding an initial la-
bel ω0 based on a set of assumed patterns for all observations in the
corpus χ as in (1) [6]. Then in each iteration t the HMM parameter
set θψt can be trained with the label ωt−1 obtained in the previous
iteration as in (2), and the new label ωt can be obtained by pattern
decoding with the obtained parameter set θψt as in (3).

ω0 = initialization(χ), (1)

θψt = arg max
θψ

P (χ|θψ, ωt−1), (2)

ωt = arg max
ω

P (χ|θψt , ω). (3)

The training process can be repeated with enough number of itera-
tions until a converged set of pattern HMMs is obtained.
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Fig. 1: Model granularity space for acoustic pattern configurations

2.2. Model Granularity Space for Multi-level Pattern Sets

The above process can be performed with many different HMM con-
figurations, each characterized by two hyperparameters: the number
of states m in each acoustic pattern HMM, and the total number of
distinct acoustic patterns n during initialization, ψ = (m,n). The
transcription of a signal decoded with these patterns can be consid-
ered as a temporal segmentation of the signal, so the HMM length
(or number of states in each HMM) m represents the temporal gran-
ularity. The set of all distinct acoustic patterns can be considered as
a segmentation of the phonetic space, so the total number n of dis-
tinct acoustic patterns represents the phonetic granularity. This gives
a two-dimensional representation of the acoustic pattern configura-
tions in terms of temporal and phonetic granularities as in Fig. 1.
Any point in this two-dimensional space in Fig. 1 corresponds to an
acoustic pattern configuration. Note that in our previous work [19],
the effect of the third dimension, the acoustic granularity which is the
number of Gaussians in each state, was shown to be negligible, thus
here we simply set the number of Gaussians in each state to be 4 in all
cases. Although the selection of the hyperparameters can be arbitrary
in this two-dimensional space, here we only select M temporal gran-
ularities and N phonetic granularities, forming a two-dimensional
array of M ×N hyperparameter sets in the granularity space.

2.3. Pattern Relabeling Considering Context Consistency

Context constraints successfully explored in language modeling can
be used here for relabeling the acoustic patterns as shown by an ex-
ample in Fig. 2. We assume the patterns ‘b’ and ‘B’ are similar
without context as in Fig. 2(a). However if the context is considered,
we may observe from the corpus that many realizations of pattern ‘b’
is preceded by pattern ‘a’ and followed by pattern ‘c’, while most
realizations of pattern ‘B’ have different context. Therefore by rela-
beling all realizations of pattern ‘B’ which are preceded by pattern ‘a’
and followed by pattern ‘c’ as pattern ‘b’, the contrast between pat-
terns ‘b’ and ‘B’ can be enhanced during the next iteration of acoustic
model update as shown in Fig. 2(b) since the borderline cases have
been resolved. As shown in Fig. 2(c), this relabeling includes both

Fig. 2: Pattern relabeling considering context consistency

Fig. 3: Local smoothing considering granularity context

pattern splitting and merging, since the realizations of pattern ‘B’ are
split into two patterns ‘B’ and ‘b’, while some realizations of pattern
‘B’ are merged into pattern ‘b’. The example here considers the con-
text in time, but can be generalized to context in model granularities
as explained below.

As shown in Fig. 3, assuming an utterance is decoded into four
different pattern sequences using four sets of patterns with neigh-
boring temporal granularity m4 > m3 > m2 > m1, i.e., pattern
HMMs with different lengths. Considering a realization of pattern
‘b’ of temporal granularity m3, we find its central frame belongs to
the realization of pattern ‘a’ of temporal granularity m4 and the real-
ization of pattern ‘c’ of temporal granularity m2. So patterns ‘a’ and
‘c’ are taken as the context of pattern ‘b’ in neighboring temporal
granularities. The same could be done for phonetic granularity.

2.4. Pattern Relabeling Method

Let ω(mk, nk, l) be the index for a decoded acoustic pattern at time
l within an utterance in the corpus χ using the acoustic pattern set
with the granularity ψ(mk, nk). The relabeled pattern ω(mk, nk, l)
is then as in (4a) i.e., the pattern among all patterns in the set of
ψ(mk, nk) which maximizes the product of the three probabilities in
(4b)(4c)(4d) evaluated with the context respectively in l, n, and m.
The first probability Pl(w) in (4b) for context in time l is actually
the product of forward bigram and backward bigram well known in
language modeling. The other two probabilities Pn(w), Pm(w) in
(4c)(4d) are exactly the same, except nk−1, nk+1 and mk−1, mk+1

are the neighboring values of n and m.

ω(mk, nk, l) = arg max
w

(Pl(w)Pn(w)Pm(w)), (4a)

Pl(w) = P (w|ω(mk, nk, l-1))P (w|ω(mk, nk, l+1)), (4b)

Pn(w) = P (w|ω(mk, nk−1, l))P (w|ω(mk, nk+1, l)), (4c)

Pm(w) = P (w|ω(mk−1, nk, l))P (w|ω(mk+1, nk, l)). (4d)

Finer patterns and coarser patterns are drastically different in terms
of perplexity; shorter patterns and longer patterns produce very differ-
ent pattern sequences in terms of duration. They are complementary
to each other, but we only consider the context consistency among
the neighboring granularity configurations as in (4). This relabeling
is performed on every decoded sequence of the M × N pattern sets
considered. Katz smoothing [21] was applied to deal with unseen
pattern bigrams. On the boundary of the granularity configurations
or time sequences, the bigram probability is taken as 1.

2.5. Pattern Enhancement by Re-estimation after Relabeling

The relabeling in (4a) can be inserted into the recursive process of
discovering the patterns in each iteration in (2)(3), as shown in (5)(6).

ωt = arg max
ω

P (ω|ωt), (5)

θψt+1 = arg max
θψ

P (χ|θψ, ωt). (6)

5232



When an iteration is completed as in (2)(3), a new set of patterns is
generated as in (2), with which a new set of labels is obtained as in
(3). The new labels ωt in (3) is then relabeled with (4a) based on the
new labels ωt on all different HMM sets to produce a slightly better
label ωt as in (5). This slightly better label ωt is then used in (6) to
generate a slightly better model set θψt+1. Note that (6) is almost the
same as (2), except here based on the slightly better label ωt obtained
in (5). In this way the relabeling process can be repeatedly applied
in every iteration, and the patterns can be enhanced by the relabeling
process during the model re-estimation. Although it is theoretically
possible to consider the optimization process in (3) and (5) jointly in
a single step, such as maximizing the product of the two probabilities
in the right hand sides of (3) and (5), practically such a joint opti-
mization is computationally unfeasible. Therefore this is done in two
separate steps here.

2.6. Spoken Term Detection

There can be various applications for the acoustic patterns presented
here. In this section we summarize the way to perform spoken term
detection [19]. Let {pr, r = 1, 2, 3, .., n} denote the n acoustic pat-
terns in the set of ψ=(m,n). We first construct a similarity matrix S
of size n × n off-line for every pattern set ψ=(m,n), for which the
element S(i, j) is the similarity between any two pattern HMMs pi
and pj in the set.

S(i, j) = exp(−KL(i, j)/β. (7)

The KL-divergence KL(i, j) between two pattern HMMs in (7) is
defined as the symmetric KL-divergence between the states based on
the variational approximation [22] summed over the states. To trans-
form the KL divergence into a similarity measure between 0 and 1, a
negative exponential was applied [23] with a scaling factor β. When
β is small, similarity between distinct patterns in (7) approaches zero,
so (7) approaches the delta function δ(i, j). β can be determined with
a held out data set, but here we simply set it to 100.

In the on-line phase, we perform the following for each entered
spoken query q and each document (utterance) d in the archive for
each pattern set ψ=(m,n). Assume for a given pattern set a docu-
ment d is decoded into a sequence of D acoustic patterns with in-
dices (d1, d2, ..., dD) and the query q into a sequence of Q patterns
with indices (q1, ..., qQ). We thus construct a matching matrix W of
sizeD×Q for every document-query pair, in which each entry (i, j)
is the similarity between acoustic patterns with indices di and qj as
in (8) and shown in Fig. 4(a) for a simple example of Q = 3 and
D = 6, where S(i, j) is defined in (7),

W (i, j) = S(di, qj). (8)

It is possible to consider the N-best pattern sequences rather than
the one-best sequences here by considering the posteriorgram vec-
tors based on the N-best sequences for d, q and integrate them in
the matrix W . However, previous experiments showed that the extra
improvements brought in this way is almost negligible, probably be-
cause the M × N different pattern sequences based on the M × N
different pattern sets can be considered as a huge lattice including
many one-best paths which will be jointly considered here [19].

Fig. 4: The matching matrix W

Fig. 5: Average Gini impurity for the top 20 words with the highest
counts in the TIMIT training set based on the original patterns (blue)
and those after relabeling (green), with different values of n and m.

For matching the sub-sequence of d with q, we sum the elements
in the matrix W in (9) along the diagonal direction, generating the
accumulated similarities for all sub-sequences starting at all pattern
positions in d as shown in Fig. 4(a). The maximum is selected to rep-
resent the relevance between document d and query q on the pattern
set ψ=(m,n) as in (9).

R(d, q) = max
i

Q∑
j=1

W (i+ j, j). (9)

It is also possible to consider dynamic time warping (DTW) on the
matrix W as shown in Fig. 4(b). However, previous experiments
showed that the extra improvements brought in this way is almost
negligible, probably because here we have jointly considered the
M × N different pattern sequences based on the M × N different
pattern sets (e.g. including longer /shorter patterns), so the different
time-warped matching and insertion/deletion between d and q is
already automatically included [19].

TheM×N relevance scoresR(d, q) in (9) obtained withM×N
pattern sets ψ=(m,n) are then averaged and the average scores are
used in ranking all the documents for spoken term detection. It is
also possible to learn the weights for different pattern sets to produce
better results using a development set. But here we simply assume
the detection is completely unsupervised without any annotation, and
all pattern sets are equally weighted [19].

3. EXPERIMENTS

3.1. Purity in Pattern Sequences for known Words

In order to evaluate the quality of the acoustic patterns we discovered
with varying temporal and phonetic granularities, we use the Gini
impurity for the pattern sequences found for known high frequency
words, since this can be evaluated for any given pattern set. Assume
all the realizations of a high frequency word (e.g. the word “water”)
are decoded into I different pattern sequences, each occupying a per-
centage fi of the realizations (Σifi = 1), we can evaluate the Gini
impurity [24] for the word using the I percentages f={fi, i=1,2,...I}
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Fig. 6: Average Gini impurity for the cluster of words with occur-
rence counts ranging from 16 to 22 with (a) m=3, (b) m=11.

as in (10),

Gini Impurity(f) =

I∑
i=1

fi(1− fi). (10)

Gini impurity falls within the interval [0, 1), reaches zero when all
the realizations are decoded into the same pattern sequence, and be-
comes larger when the distribution is less pure. We trained the above
different sets of patterns with m=3, 5, 7, 9, 11 and n=50, 100, 200,
300 on the TIMIT training set. Fig. 5 shows the average Gini impu-
rity for the top 20 words with the highest occurrence counts in TIMIT
training set, based on the original patterns (blue) and those after re-
labeling (green) for all cases considered. We see the impurity was in
general high for such automatically discovered patterns because the
realizations of the same phoneme produced different speakers were
possibly decoded as different patterns, and the insertion/deletion in-
evitably increased the impurity. Although the impurity was high, the
relabeling proposed here generated better patterns. We see the differ-
ence was more significant for larger m. Because the temporal varia-
tion is easily captured by models with short patterns (m=3 or 5 with
high impurity) which increases the impurity, much lower impurity
was achieved with longer patterns (m=9 or 11).

Another set of results for average Gini impurity for the cluster of
words with occurrence counts ranging from 16 to 22 in the TIMIT
training set is shown in Fig. 6 for m=3 and 11 states per HMM with
varying number of distinct patterns (n). It is still quite clear that
the relabeling process enhanced the patterns, and it is interesting to
note that the trends for m=3 and 11 are quite different (Fig. 5(a) and
(b)). As mentioned above, the temporal variation is easily captured
by models with short patterns which increases the impurity (e.g. m=3
in Fig. 6(a)) so increasing the number of patterns (n) helped reduce
the impurity. However, when the models are long enough (e.g. m=11
in Fig. 6(b)), larger number of patterns(n) gives more redundant pat-
terns which caused confusion during decoding, so the impurity went
up with larger n. These results indicate that the different sets of pat-
terns of different model granularities were complementary to each
other. Note that only high frequency words with enough realizations
can be used or the impurity evaluation here to show the quality of
the patterns. But how these patterns can be applied to spoken term
detection will be shown below, for which the queries are usually low
frequency words, whose impurity is difficult to evaluate.

3.2. Unsupervised Spoken Term Detection

We conducted two separate query by example spoken term detec-
tion experiments on two spoken archives. In the first experiment, the
TIMIT training set was used as the spoken archive and the spoken
query set consisted of 16 words randomly selected from the TIMIT
testing set. In the second experiment, the spoken archive was 4.5
hours of Mandarin Broadcast News segmented into 5034 spoken doc-
uments and the spoken query set was 10 words selected from an-
other development set. In either case, a spoken instance of a query
word was randomly selected from the data set, and used as the spoken

Search methods(MAP) TIMIT Mandarin
(a) frame-based DTW on MFCC 10.16% 22.19%
(b) proposed: original patterns 26.32% 23.38%
(c) proposed: relabeled patterns 28.26% 24.50%

Table 1: Overall spoken term detection performance in mean aver-
age precision.

query to search for other instances in the spoken archive. The con-
ventional 39 dimensional MFCC features were used for the HMMs.
20 sets of acoustic patterns were generated for TIMIT with m = 3, 5,
7, 9, 11 and n = 50, 100, 200, 300; 9 sets for the Mandarin Broadcast
News with m = 3, 7, 13 and n = 50, 100, 300; all with 4 Gaussian
mixtures per state. We compared ω(m,n) with ω(m,n) for each
(m,n) pair. We used the mean average precision (MAP) [25][26] as
the performance measure, a higher value implies better performance.

The MAP performance of each of the 20 pattern sets for TIMIT
and 9 sets for Mandarin Broadcast News before and after relabeling
is in Fig. 7(a)(b) where the performance was clearly boosted for most
of the pattern sets. A paired sample t-test was used to check the MAP
improvement of relabeled pattern sets, t(28)=3.37, p=0.0011, signif-
icant improvement was observed. Note that different from TIMIT
which had many different speakers, the Mandarin Broadcast News
was produced by a limited number of anchors, so MAP for each pat-
tern set ranged between 18% to 22%, much higher than TIMIT. Al-
though the MAP for each individual pattern set was relatively low
on TIMIT (1% to 5%) in general, much better results in MAP can
be obtained when all of them are jointly considered as rows (b)(c)
in Table 1. Row (a) in Table 1 was the frame-based dynamic time
warping (DTW) on MFCC sequences. We see the relabeled patterns
achieved an MAP of 28.26% and 24.50% which is significantly better
than that using the original patterns (26.32% and 23.38%). Further
more, both of them significantly outperformed the baseline (10.16%
and 22.19%), which proved the improvement was non-trivial.

4. CONCLUSION

In this work, we propose a method for improving the quality of multi-
level acoustic patterns discovered from a target corpus. By incor-
porating context consistency in time and model granularity, a more
consistent set of patterns can be obtained. This is verified with im-
proved performance in spoken term detection on TIMIT and Man-
darin Broadcast News.

Fig. 7: mean average precision of each of the HMM sets with the
granularity hyperparameters (m,n) on (a) TIMIT and (b) Mandarin
Broadcast News.
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