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ABSTRACT

Compounding is one of the most productive word formation pro-
cesses in many languages and is therefore a main source of data
sparsity in language modeling. Many solutions have been suggested
to model compound words, most of which break the compound into
its constituents and train a new model with them. In earlier work,
we argued that this approach is suboptimal and we presented a novel
technique that clusters new, domain-specific compound words to-
gether with their semantic heads. The clusters were then used to
build a class-based n-gram model that enabled a reliable estimation
of n-gram probabilities, without the need for additional training data.
In this paper, we investigate how this “semantic head mapping” can
best be made an integral part of the language modeling strategy and
find that, with some adaptations, our technique is capable of pro-
ducing more accurate compound probability estimates than a base-
line word-based n-gram language model, which lead to a significant
word error rate reduction for Dutch read speech.

Index Terms— LVCSR, language models, n-grams, data spar-
sity, word clusters

1. INTRODUCTION

Language data sparsity has been addressed in different ways through-
out the history of automatic speech recognition (ASR). In the early
days of n-gram language models (LMs), a series of smoothing
techniques were proposed that redistribute the available probability
mass and put aside some of the mass for unseen events [1, 2, 3, 4]. A
more versatile approach was suggested by Brown et al. [5] who as-
sign words to classes, each word in a class having similar properties.
Instead of word n-gram probabilities, class n-gram probabilities are
calculated to achieve a higher level of abstraction.

Recently the focus has shifted to LMs with continuous distribu-
tions in the form of semantic-analytical and neural network-based
approaches. Topic models such as LSA [6], pLSA [7] and LDA [8]
are bag-of-words models that are inspired by the notion of word
co-occurrence and can be combined with n-grams to model both
local and long-distance phenomena. The current state-of-the-art in
language modeling however is based on neural networks (NNs).
Amongst others, [9] and [10] have shown that NNs are capable of
integrating both syntactic and semantic properties, but unfortunately
these models are currently too expensive for direct integration into
an ASR decoder.

Although this shows that there has been great progress in lan-
guage modeling, all of the above models rely on corpus statistics and
therefore, none of them are very good at estimating reliable probabil-
ities for new words or words that occur infrequently. Unfortunately

(from a language modeling point of view), new words will continue
to be created, perhaps even at a faster pace than before: although the
rapid expansion of the Internet enables the gathering of Big Data, it
goes hand in hand with numerous new words e.g. Netizen, tweeple,
infobesity, ...

New terms may be coined in various ways. In many languages,
compounding is one of the most productive processes which induces
the frequent creation of numerous new words all over the world. This
gives rise to challenging problems in speech and language research
which has been addressed by several authors for languages as diverse
as German [11], Mandarin [12], and Hindi [13].

In recent work [14] we proposed an alternative to the popu-
lar, yet suboptimal decompound-recompound approach. By map-
ping compounds onto their semantic heads, our technique effectively
clusters words regardless of their frequency. The word clusters can
be used to build a class-based n-gram LM enabling a more reliable
estimation of n-gram probabilities for compounds. This proof of
concept showed that semantic head mapping is a viable technique to
add new compounds to a given LM, which is a typical use case in
domain adaptation.

In this paper, we investigate how semantic head mapping can
best be made an integral part of the language modeling strategy. In
other words, we would like to answer the following research ques-
tion: given some training data, what is the best way to model com-
pounds in an n-gram LM?

The rest of the paper is organized as follows: Section 2 briefly
recapitulates our earlier work on semantic head mapping. In Sec-
tion 3, we highlight an improvement on our existing work in do-
main adaptation. We then discuss in Section 4 how our framework
needs to be altered in order to apply it in a more general fashion and
validate this approach experimentally in Section 5. We end with a
conclusion and a description of future work.

2. SEMANTIC HEAD MAPPING

Semantic head mapping (SHM) is a technique that tackles data spar-
sity in n-gram LMs by building a class-based model with compound-
head clusters. In this section, we briefly review the different steps
that are involved in this process. For a more detailed explanation,
we refer to [14].

2.1. Idea

Compounding is the process of word formation which combines two
or more lexemes into a new lexeme e.g.energy+drink. Most com-
pounds are endocentric i.e. they consist of a semantic head and mod-
ifiers which introduce a hyponym-hypernym or type-of relation. The
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position of the head varies among languages and often corresponds
to a specific manner of constituent combination. In what follows
we will focus on compounds in Dutch, which is our native language
and the target language in our experiments, but we believe that the
presented ideas extend well to other languages on the condition that,
like Dutch, they have a lexical morphology with concatenative and
right-headed compounding, which at least includes most Germanic
languages.

In contrast to most other types of word formation, compound-
ing is a very transparant way of creating new words: the meaning
of the new word can be immediately understood by examining its
constituents. This is a property that has not been (fully) exploited
in previous literature. In [14] we argued that for most compound
words, the head has the unique property of carrying inherent class
information, which is obviously the case for the predominant class
of endocentric compounds. By mapping a compound onto its seman-
tic head we effectively apply a clustering that does not depend on any
external information and can hence be applied to all compounds, re-
gardless of their frequency in a training corpus. The clustering can
be used to build a class-based n-gram model, where compounds are
clustered together with their heads.

2.2. Finding the semantic heads

The semantic heads are obtained via a two-step process: (1) a gener-
ation module which generates all possible decompounding hypothe-
ses; and (2) a selection module which selects the most plausible
head. The generation module is a brute-force (recursive) lexicon
lookup for all possible substrings of the compound. Constraints can
be set on the lengthsLh andLm of the substrings and on the lex-
icon sizesVh andVm for heads and modifiers respectively. In the
selection module we prune the unlikely hypotheses and select the
most likely head candidate. Previous experiments show that the triv-
ial criterion of maximum head length outperforms criteria based on
corpus statistics [14].

2.3. LM incorporation

Semantic head mapping is inspired by class-based n-gram mod-
els [5]. The idea of class n-grams is that words are similar to others
in their meaning and syntactic function. Grouping such words into
classes can help overcome the data sparsity in training material,
since the prediction of infrequent or unseen words is then based
on the behavior of similar words that have been seen (more often).
Formula 1 shows how the n-gram probabilities are calculated:

P (wk|w
k−1

1 ) = P (Ck|C
k−1

1 )P (wk|Ck) (1)

wherewk andCk denote the word and class at positionk respec-
tively and wk−1

1
and Ck−1

1
denote the word and class sequences

from positions1 to k − 1.
A problem with class-based approaches is that they tend to over-

generalize: the hypothesis that all words in the same class behave
in a similar fashion is too strong. Moreover, clustering words into
appropriate classes is not an easy problem, especially for rare words
which are typically not included in a taxonomy and appear too infre-
quently for corpus-based clustering techniques.

Our approach essentially consists of building a class-based n-
gram model, where classes are created, using the SHM clustering
scheme discussed above. As opposed to most clustering algorithms,
SHM does not just shift the data sparsity problem from the LM to
the clustering: each (endocentric) compound has a semantic head
and can thus be clustered, whether it be frequent or infrequent. In

addition, since most compounds are in fact subtypes of their seman-
tic head, overgeneralization is limited.

In [14] we applied SHM in the context of domain adaptation,
where we only integrated compound-head clusters into the LM for
unseen words. Since the compound is well represented by its se-
mantic head, we used the n-gram probability of the head as the class
n-gram probabilityP (Ck|C

k−1

1
) for each member. As no count in-

formation was available, the within-class probability was estimated
by assigning a frequency countĉ(w) to each of the unseen com-
poundsw and normalizing by the count of all members of the class
Chead, defined by the semantic head.

3. IMPROVED CLUSTERING: WORD-AFFIX
DISAMBIGUATION

Dutch has a number of letter sequences that can act both as a word
and as an affix, most of which are relatively short. The SHM system
we described in [14] cannot distinguish between the two, since it has
no access to semantic knowledge. This leads to a number of errors
where a prefix is interpreted as a noun modifier e.g.ver+lengenor
where a suffix is interpreted as the semantic head e.g.gevaar+lijk.
Although in many cases this phenomenon can be prevented by in-
creasing the minimal length of the modifiers/heads, this also lowers
the system’s recall. Better solutions are at hand, without the need for
semantic ontologies. To address this issue, we made lists of all the
sequences ofk letters at the start and end of each word in our corpus
and counted how many times they occurred as a word or an affix.
The idea is that affixes perform a syntactic role that can be applied
to a large number of words and are therefore more likely to occur
than regular words. Letter sequences that occur significantly less as
a word than as an affix, are then assumed to be prefixes/suffixes and
are subsequently removed from the modifier/head lexica in the gen-
eration module. This solution also has the positive side effect that
some spelling mistakes and foreign heads are filtered out. In what
follows, the extent of affix-word ambiguity handling is indicated by
the amount of modifiersam and headsah that were removed from
the constituent lexica.

4. ADAPTATIONS FOR IN-VOCABULARY MAPPING

Semantic head mapping needn’t be restricted to the context of do-
main adaptation: even for compounds for which training material
exists, the clustering can be beneficial. In this section, we will show
how our existing system can be adapted for in-vocabulary mapping.

4.1. Conservative mapping

In domain adaptation, only unseen words undergo the process of
SHM. As such, mapping errors are not likely to be costly: if a non-
compound is mapped, or if a compound is mapped to the wrong
head, it is unlikely that this will do much damage to the LM. The
unseen word will most likely not be recognized, which was already
the case, even before SHM; and the probability mass of the head will
only be reduced by a small amount.

In the case of the more general approach however, incorrect
mappings may be catastrophical. Because the amount of words that
undergo SHM is much larger, the probability mass of the hypoth-
esized head may be severely reduced. Moreover, many words that
were correctly recognized before, may no longer be recognized.
Clearly, in this scenario, SHM should be undertaken with more
caution.
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This caution was implemented by attributing a larger relative
importance to SHM precision than to recall during model optimiza-
tion. We achieved this by using theFβ-score which is well known
in information retrieval:

Fβ = (1 + β
2).

precision.recall

(β2.precision) + recall
(2)

whereβ indicates the weighting ratio of recall and precision. In our
case,β should thus be lower than 1.

4.2. Morphological knowledge

In our earlier work [14], we concluded that the use of part-of-speech
(POS) information did not yield any improvement to the semantic
head mapping of out-of-vocabulary words. This was mostly caused
by incorrect POS tags assigned to both the infrequent compounds
and to a lesser extent also the constituents. The data sparsity problem
had thus shifted from language modeling to POS tagging. In our
current setup, where we target more frequent compounds, this is not
the case. The semantic head mapper is less hampered by sparsity
and is helped by the inclusion of sophisticated linguistic knowledge
based on POS rules.

As a first rule we force the compound and its head to have iden-
tical POS tags, as a change in POS tag is unlikely to correspond
to a correct semantic head. This compound-head POS constraint
requires the POS tagger to be fine-grained in order to distinguish
between e.g. noun genders or verb tenses. To further constrain the
search space we apply compounding rules that only allow combining
constituents with certain POS tags e.g. concatenating two nouns is
productive, hence allowed, but concatenating two verbs is not. These
rules are implemented based on [15] where the author showed that
they severely restrict overgeneration.

As a final SHM improvement we investigate the effect of a lex-
ical database that contains hand-made morphological analyses of a
large amount of words, which we expect to be beneficial for both
recall and precision.

4.3. Data-driven LM integration

In the context of domain adaptation we did not have any training data
for the compounds to be mapped. As was mentioned in Section 2.3,
we therefore had to resort to several estimation techniques for the
class n-gram and within-class probabilities respectively. Here, how-
ever, we do have access to training material, which facilitates the
estimation process.

For the estimation of the class n-gram probability we no longer
only use the n-grams of the semantic head, but also include the n-
grams of all the class members i.e. the compounds that were mapped
to this head. For the within-class probability, we can simply plug in
the counts of the compounds. For compounds that are too infrequent,
we can still attempt empirical estimation.

5. EXPERIMENTS AND DISCUSSION

5.1. Data

Our LM training data consists of a collection of normalized newspa-
per texts from the Flemish digital press database Mediargus which
contains 1104M word instances (tokens) and 5M unique words
(types) from which we extracted all the mentioned vocabularies
and word frequencies. Vocabularies ofV words always contain the
V most frequent words in Mediargus. They were converted into

phonemic lexica using an updated version of [16] and integrated,
together with the created LMs (see Section 5.3), into the recognizer
described in [17]. The semantic head mapper is the same that was
used in [14], except for the adaptations mentioned in the previous
sections. The POS tags, used for the morphological rules, were
generated by running the Dutch POS tagger Frog [18] on the entire
LM training data, after which only the most frequent POS tags were
kept for each word. The lexical database from which we extracted
decompoundings is CELEX [19] which contains morphological
analyses of 122k types of which 68k are compounds.

The ASR development and test data each consist of 200 frag-
ments of the Flemish part of the Corpus Spoken Dutch [20] compo-
nent o, which contains read speech. Both of them contain around
6.5h of speech and consist of about 60k tokens, produced by 10k
types. As opposed to our earlier work, the data sets were not re-
duced to fragments that only contain compounds, to show that the
SHM of in-vocabulary words does not yield worse LM statistics and
hence WERs for non-compounds.

5.2. SHM improvements

Although the SHM system that was used in [14] did a fine job in
handling unseen compounds, it would not be suited for large-scale
application, because it has too many false positives. As we men-
tioned in 4.1, the damage done by an incorrect mapping is likely
to be larger than the positive impact of a correct mapping, so only
a system that attaches more importance to precision than to recall
would be suited to our purposes. The F-score was derived so that
Fβ measures the accuracy of a system that attachesβ times as much
importance to recall as to precision.

We did not attempt a thorough optimization ofβ, as it is only
an indirect measure of the fitness of our semantic head mapper. In-
stead, we performed ASR experiments with retrained class-based n-
gram LMs, using the optimal clustering systems wrt precision and
recall and chose the one that performed best on the development
data. Since ASR experiments are computationally expensive we then
determined an optimal value ofβ for future experiments. Table 1
shows precision, recall, WER and F-scores on the development data
for various systems. Note that the WERs are achieved by feeding
the 700k least frequent words to the semantic head mapper (see Sec-
tion 5.3).

In our initial attempts to reduce the number of false positives
we found that increasing the minimum constituent length to 5 or 6,
and pruning the most probable affixes, drastically decreased the re-
call and as such limited the potential of SHM1 (P=88.5%, R=12.0%,
WER=27.55%). This shows that more intelligent pruning is neces-
sary and the POS rules as stated in [15] provide exactly this. The ap-
plication of each rule separately shows that most of the compounds
follow one of the following 2 rules:

1. noun + noun = noun (spraak+herkenning)
2. verb stem + noun = noun (speel+plein)

When combined, these rules allow for a precise SHM setup
(SHM2) with better recall and lower WER (P=90.6%, R=25.0%,
WER=27.25%), even when allowing relatively short constituents
of length 4. Although this setup disallows all other possible de-
compoundings and thus employs a very rigorous pruning, it still
benefits from affix-word ambiguity resolution: pruning the 10,000
most probable suffixes yields an absolute precision increase of 2.7%
at the cost of a recall decrease of 3.1%, which lead to a further WER
reduction of 0.11% (SHM3).

In fact, when evaluated on the development set, this simple sys-
tem turns out to be very competitive to systems that include external
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Vm Vh Lm Lh am ah rules db P R WER F0.2 F0.5

SHM1 600k 200k 5 6 200 300 - no 88.5 12.0 27.55 71.07 38.9
SHM2 20k 20k 4 4 0 0 1-2 no 90.6 25.0 27.25 82.29 59.42
SHM3 20k 20k 4 4 0 10k 1-2 no 93.3 21.9 27.14 82.90 56.48
SHM4 20k 20k 4 4 0 10k 1-2 yes 89.6 31.3 27.15 83.61 65.28
SHM5 200k 100k 3 4 0 0 1-5 yes 80.2 46.6 27.09 78.04 70.09

Table 1. SHM fitness as measured by precision (P), recall (R), WER (with 700kleast frequent words fed to SHM) and F-scores on the
development data. The columns indicate (fltr) the generation parameters(Vm-ah), which POS rules were employed, and whether or not the
system had access to a lexical database.

knowledge from a lexical database with hand-made morphological
analyses. Only SHM5 is able to beat it by a small margin (P=80.2%,
R=46.6%, WER=27.09%), employing these additional morphologi-
cal rules:

3. adverb + noun = noun (samen+stelling)
4. noun + adj = adj (kurk+droog)
5. quantifier + quantifier = quantifier (vijf+tien)

Notice that SHM4 is a nice illustration of the improvements de-
scribed in this paper. It has a precision that’s comparable to (and
even a bit higher than) SHM1, but a recall that’s almost 20% higher!

At first glance, it is not obvious whatβ one should employ for
future experiments. However, if we distinguish between the setups
that have access to the lexical database and those that don’t, we find
that, although both groups require emphasis on precision, the first
group attributes more weight to recall (β ≥ 0.5) than the second
group (β ≤ 0.2). This is logical, since with access to external mor-
phological knowledge a system can afford to make more mistakes.

5.3. In-vocabulary mapping

For a thorough investigation of the in-vocabulary mapping, we
trained an open vocabulary word-based 3-gram LM with modified
Kneser-Ney back-off on the 800k most frequent words in Medi-
argus. Different fractions of the lexicon were fed to the semantic
head mapper to investigate to what extent SHM would be useful
for (in)frequent compounds. Fractions were chosen based on word
(in)frequency e.g. an indicated fraction of 50% means that the 400k
least frequent words in the LM training data undergo decompound-
ing. Only those that are judged to be a compound by the SHM
system are clustered together with their semantic head. For each
fraction then, various SHM settings were explored and optimized
on the development data, as was already explained in Section 5.2.
We found that the optimal system corresponds to SHM5 in Table 1,
which shows that 0.5 is a reasonable value forβ, especially for
systems that have access to external morphological knowledge.

Table 2 gives an overview of the WERs on both the development
and evaluation data for this optimal system. It can be seen that for
all fractions, SHM constitutes a small, but significant improvement
over the baseline word-based n-gram LM, which is indicated by a
0% fraction. Another thing to remark, is that the results continue
to improve as the fraction undergoing SHM becomes larger, unless
when SHM is applied to the complete lexicon. We suspect that this
is due to some overgeneralization by clustering many frequent com-
pounds: a very frequent compoundwfreq is more likely to have
a unique meaning and context that is different from its head. If it
is clustered together with the head and the potentially many com-
pounds that have the same head, it will lose some of its probability
mass to these other class members, which may be harmful for con-
texts that are unique towfreq. It should however be noted that even
in these extreme cases, SHM still outperforms the baseline.

fraction of lexicon undergoing SHM
0% 50% 75% 87.5% 93.75% 100%
0 400k 600k 700k 750k 800k

dev 27.70 27.19 27.12 27.09 27.08 27.31
eval 26.68 26.35 26.35 26.31 26.27 26.43

Table 2. WERs (in %) in function of fraction of the 800k lexicon un-
dergoing SHM, compared to a baseline (0%) 3-gram LM. Fractions
correspond to the least frequent words in the LM training data.

The WER reductions are considerable, given the fact that we are
only trying to correct compound words. This becomes more clear
when we check how many of the previously misrecognized com-
pounds were actually corrected. In the scenario of feeding 93.75% or
750k words of the lexicon to the head mapper, approximately 220k
words are mapped of which only 592 types and 632 tokens actually
occur in the test data. Of these, 75.7% of the types and 76.3% of
the tokens were correctly recognized after applying SHM to the 3-
gram LM. Other scenarios are similar. The fact that clustering more
than a quarter of the complete vocabulary does not harm the WERs,
but on the contrary, that after clustering, more than 75% of the com-
pounds are correctly recognized, shows that the achieved improve-
ments are substantial and indicates that semantic head mapping is a
better way to model compounds in Dutch than classical word-based
n-gram LMs.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have described improvements to our semantic head
mapping technique which enable its application on in-vocabulary
words. By including word-affix ambiguity filters, morphological
rules based on part-of-speech and a lexical database with morpholog-
ical analyses we created high precision semantic head mappers with
increased recall (e.g. the 20% increase for a system with 90% preci-
sion). We have proven empirically that the resulting compound-head
clusters, when used in a class-based n-gram language model, are ca-
pable of estimating more reliable n-gram probabilities of seen com-
pounds i.e. compounds for which training data is available. More-
over, we have shown that a more conservative, but accurate mapper
may be applied to a large fraction of the lexicon to achieve a com-
pound recognition of more than 75% and a significant WER reduc-
tion, compared to a baseline word-based n-gram language model.

We believe that the compound-head clusters are a useful source
of information that don’t have to be limited to class-based n-gram
language models. In the future, we will investigate whether they can
be successfully applied to more advanced LM techniques such as
neural network language models.
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