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ABSTRACT

This paper presents a novel double-layer neighborhood graph index
for acceleration of similarity search that accomplishes fast query-
by-example spoken term detection (STD). When a query segment is
given, our proposed STD method finds similar segments to the query
from an utterance data set by efficient similarity search that traverses
the double-layer neighborhood graph (DLG) with a low computa-
tional cost. The segment is a sequence of Gaussian mixture model
posteriorgram frames and corresponds to a vertex in theDLG. A dis-
similarity between vertices is measured by dynamic time warping.
TheDLG consists of two distinct degree-reducedk-nearest neighbor
graphs in a base and an upper layer. The base layer’s graph has all the
vertices in the data set while the upper layer’s graph includes only
representatives extracted from the vertices in the base layer. By way
of analogy, search in theDLG resembles driving ongeneral roads
andexpress highwaysappropriately for travel-time saving. Experi-
mental results on the MIT lecture corpus demonstrate that the pro-
posed method achieves CPU time reduction by40% and more than
60% compared to the most recent method and the ordinary graph-
based method, keeping almost the same precision.

Index Terms— Spoken term detection, Query-by-example
search, Search index, Neighborhood graph, Dynamic time warping

1. INTRODUCTION

Increasing use of various and large speech data cultivates greater
interest in spoken term detection (STD). A popular approach is to
convert the speech data into linguistic representation in advance by
automatic speech recognition (ASR), and then to execute search by
a text query term [1]. This approach is useful for tasks which are
well-resourced in terms of ASR model construction. In contrast, the
demand for approaches in low-resource situations has increased re-
cently, where ASR is not available [2]. Under such situations, query-
by-example STD is a useful candidate that does not require any type
of prior linguistic knowledge such as transcriptions, language mod-
els, or pronunciation dictionaries [3,4].

Unfortunately, query-by-example STD has drawbacks of low
performance in accuracy and speed in spite of its potential avail-
ability. The low accuracy is attributed to the fact that STD must
rely only on the acoustic information without the linguistic knowl-
edge. To solve the accuracy problem, many efforts have been contin-
ued [4–7]. The low speed comes from the fact that an indexing and
a search algorithm are still under development. For the high speed
performance, a template matching approach based on dynamic time
warping (DTW) has been proposed [8–13]. In particular, the meth-
ods reported in [8, 9, 12, 13] share the common feature and dissimi-
larity; a Gaussian mixture model (GMM) posteriorgram as a feature
of a time frame, and as a dissimilarity between two posteriorgrams,
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the negative logarithm of the probability that the two posteriorgrams
are generated from the same distribution [14].

We focus on the improvement of the graph-based similarity
search method (GSS) in [12], which uses neighborhood graph index.
A vertex and an edge in the graph correspond to a GMM posteri-
orgram segment and the relationship between a pair of segments,
which is measured by DTW, respectively. Once a graph index is
constructed,GSScan be performed very fast, which is advantageous
when search tasks for distinct queries are performed many times in
the same data set.

In this paper, we present a novel double-layer neighborhood
graph (DLG) index forGSSacceleration. Figure 1 shows a diagram
of theDLG. The proposed STD method finds similar segments to a
given query segment from an utterance data set by traversing aDLG
with a simple search algorithm. TheDLG consists of two distinct
degree-reducedk-nearest neighbor (k-DR) graphs in a base and an
upper layer. Ak(b)-DRgraph in the base layer is constructed from all
the vertices in the data set while ak(u)-DRgraph in the upper layer is
independently constructed by using only representatives of the ver-
tices in the base layer. Intuitively, we can understand the two distinct
graphs in the base and the upper layer asgeneral roadsandexpress
highwaysfor travel-time saving, respectively. We demonstrate in ex-
perimental results on the MIT lecture corpus [15] that the proposed
DLG method achieves CPU time reduction by40% and more than
60% compared to the recent methodHGSSin [13] and the ordinary
GSSin [12], respectively, keeping almost the same precision.

2. RELATED WORK

We review three topics: STD by DTW, similarity search using ak-
nearest neighbor graph family as an index, and centrality in graphs.

2.1. Spoken Term Detection Using Dynamic Time Warping
We can categorize fast STD by a template matching approach based
on DTW into two types. One is an exact method that reduces the
number of exact DTW-score calculations by using a DTW-score
lower bound obtained just when a query segment is given, i.e.,on-
line [3, 8, 9]. The other is an approximate method that is charac-
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terized by the use of an index built from an utterance data setoff-
line before search [10–13]. A typicalon-line exact method is the
STD using a DTW-score lower bound calculated with a low com-
putational cost in [8], which we callLB. Furthermore, by applying
a piecewise aggregation approximation technique toLB, the speed
performance was improved [9]. In the approximate methods, there
are some methods using different types of an index; a hash table gen-
erated by locality-sensitive hashing (LSH) [10], ak-means tree [11],
and ak-DRgraph [12,13]. Note that the parameterk in thek-means
algorithm denotes the number of centroids in clusters, and differs
from graph structural parameterk in thek-DRgraph.

2.2. Similarity Search Using a Neighborhood Graph Index
A k-nearest neighbor (k-NN) graph has been studied as a search in-
dex [16–20]. Thek-NNgraph has an edge between a pair of vertices
x andy if x is among thek closest vertices toy or vice versa. Note
that the term “close” means a concept measured by not only a dis-
tance but also dissimilarity. Ak-NN graph has useful properties for
search [16], which resemble those in small-world networks [21,22],
both a tendency of like to associate with like and a very small aver-
age shortest path length. These properties allow a search algorithm
to reach the vertex closest to a given query vertex from an initial
vertex chosen at random with a few steps. In particular, ak-DR
graph, which is a member ofk-NNgraph family and is improved for
achieving better search performance, has been applied to a variety
of data sets: large-scale documents [16], images [23], GMMs with a
Kullback-Leibler divergence as a dissimilarity [24], and GMM pos-
teriorgram sequences [12,13].

2.3. Centrality in Graphs
A proposed double-layer neighborhood graph (DLG) needs repre-
sentatives of all the vertices in the base layer for constructing the up-
per layer. We first prepare clusters, i.e., subgraphs in the base layer
in the same manner as that in [13]. We next extract a representative
vertex from each subgraph by usingcentrality. Centrality is one of
structural properties that characterize a graph (or network) [25]. Var-
ious types of centrality have been proposed, for instance, degree cen-
trality, closeness centrality, graph centrality, betweenness centrality,
and eigenvector centrality. In these, the betweenness centrality of
a vertex in a graph is popular and widely used. The betweenness
centrality is basically an appearance frequency of a vertex on short-
est paths between all the pairs of vertices in the graph. Moreover,
a fast algorithm for calculating the betweenness centrality has been
reported in [26]. We adopt the betweenness centrality as a measure
to select a representative of a subgraph, as detailed in Section 5.1.

3. PROBLEM FORMULATION

We deal with query-by-example STD as the following problem iden-
tical to that in [12] (For details to [12]). Suppose that a set of GMM
posteriorgram sequences produced from an utterance data set, mul-
tiple query GMM posteriorgram segmentsqi (i=1, 2, · · · , m) pro-
duced from spoken instances for an identical query keyword, a def-
inition of a normalized DTW score betweenqi andx (x is a GMM
posteriorgram segment), and the number of resultant utterancesT
are given. Then, efficiently find theT -best utterances based on a
fusion score of the multiple query GMM posteriorgram segments.

4. GRAPH-BASED SIMILARITY SEARCH

We solve the foregoing problem by a graph-based similarity search
method (GSS) characterized by the following three points; pre-
constructing multiplek-DR graphs as index candidates for a query
segment with any length, selecting an appropriate index from the
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Fig. 2. Conceptual diagram of greedy search paths in (a) thek-
DR graph and (b) theDLG when the greedy search algorithm finds
“Target” closest to the queryq from “Start”. The path length4 in the
DLG is smaller than8 in thek-DRgraph.

candidates when a query is given, and performing search in thek-DR
graph with a multi-start greedy search (MSGS) algorithm followed
by a breadth-first search (BFS) algorithm. We briefly review an
ordinary and a hierarchicalGSS[12,13], in terms of the commonk-
DR graph and each search algorithm, to shed light on our proposed
method.

4.1. Ordinary GSS
A k-DRgraph is a subgraph of ak-NNgraph, and has fewer edges (a
smaller degree) [16]. The degree reduction is effective for fast graph
search. This is because a computational cost of a graph search algo-
rithm with a greedy manner correlates with the product of an average
degree and an average shortest path length, and the average shortest
path length of thek-NN graph is already small to some extent for
its small-world property [16]. Furthermore, to maintain navigation
function of a small-world graph [27], thek-DRgraph is designed so
that a greedy search algorithm can reach each vertex from at least its
k-th closest vertex as thek-NNgraph.

The ordinaryGSSemploys a combination of a multi-start greedy
search (MSGS) and a breadth-first search (BFS) to find the Top-T
vertices closest to a query vertex [12]. TheMSGSalgorithm starting
from multiple initial vertices finds the closest vertex to the query at
a high search success rate, and collects a tentative set of the top-T
vertices (a tentative top-T set) on the paths. The successiveBFS
algorithm determines the top-T set by updating the tentative top-
T set as follows. TheBFSalgorithm repeatedly adopts a vertex at
which theMSGSalgorithm terminated in the tentative top-T as a root
(initial) vertex in ascending order of its dissimilarity to the query.
Each iteration terminates if the tentative top-T set is not updated at
a current depth.

4.2. Hierarchical GSS
The HierarchicalGSS(HGSS) achieves faster STD than the ordinary
GSSby dynamically reducing degreeson-line [13]. When ak-DR
graph is constructed referring to aK-NN list (K ≥ k), hierarchical
clustering for the vertices in the graph is simultaneously performed
by using the same list. Each cluster is regarded as a supernode in
the hierarchical structure and given a cluster identification number
(CIDN). Note that the edges in thek-DR graph are maintained with
no change. TheHGSSexecutes a combination of aMSGSand a
BFSalgorithm in thek-DR graph, which differs from the search al-
gorithm in the ordinaryGSSin added edge-selection function (or
vertex-selection function) using the CIDNs. TheMSGSalgorithm
selects vertices whose DTW-scores have to be calculated from all
adjacent vertices based on their CIDNs, i.e., it reduces the number
of DTW-score calculations. TheBFSalgorithm terminates early by
using the CIDN. Thus theHGSSlimits the search space, resulting in
the reduction of the computational cost.
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Fig. 3. Structural properties of double-layer neighborhood graphs
(DLG) with segment lengths of40, 60, and100 alongk(u): (a) av-
erage degree, (b) average shortest path length, and (c) product of
average degree and average shortest path length, which correlates
with a computational cost in search.

5. PROPOSED GSS METHOD USING A DLG INDEX

We tackle the acceleration of similarity search for fast query-by-
example STD. A key is a novel search index, a double-layer neigh-
borhood graph (DLG). Figure 2 shows a conceptual diagram of
greedy paths in thek-DR graph and theDLG when the greedy
search algorithm starting from “Start” vertex finds “Target” vertex
closest to the given queryq. In Fig. 2, theDLG decreases the path
length by half, compared to thek-DRgraph. TheDLG can reduce an
average shortest path length by controlling the structural parameter
k in the two distinct layers. Note that the proposed method using
the DLG differs from the recentHGSSin both the index structure
and the search algorithm. In simple terms, the proposed method
transfers a part of computational costs during search in theHGSSto
a cost for constructing its index structure,DLG.

5.1. Representative Vertices

TheDLG consists of two distinctk-DRgraphs; ak(b)-DR in the base
layer and ak(u)-DR graph in the upper layer. Thek(b)-DR graph is
ordinarily constructed from all the vertices (segments) in a given ut-
terance data set while thek(u)-DRgraph is independently constructed
from only representative vertices in the base layer. Each representa-
tive is a vertex with the highest vertex (node) betweenness centrality
in a subgraph in thek(b)-DR graph. The subgraph is defined as a
graph consisting of the following vertex set and edge set. The vertex
set is a set of vertices that are given the same CIDN by the hierarchi-
cal clustering described in Section 4.2. The edge set is obtained by
removing between-cluster edges and keeping within-cluster edges in
thek(b)-DR graph. A search algorithm starting from the representa-
tive seems to reach any vertex in the subgraph with a few steps with
high probability because the representative most frequently appears
in shortest paths of all the pair vertices in the subgraph.

5.2. Double-Layer Neighborhood Graph

A DLG diagram is shown in Fig. 1. To determine structural param-
etersk(b) andk(u) of the graphs, we verified statistical properties on
k of an ordinaryk-DR graph for the MIT lecture corpus (detailed in

Section 6.1); an average degree, an average shortest path length, and
their product that relates to a computational cost in a graph search.
Note that thek value affects both computational cost in search and
search accuracy. The search accuracy is in particular controlled by
both thek value and search parameterL, which is the number of
starting vertices in aMSGSalgorithm [23]. In this paper, we adopted
k(b) =20 based on our observational results.

The DLG is built by a fusion of thek(b)-DR and thek(u)-DR
graph. The graph fusion is simply expressed as follows. LetΓ =
(V, E) denote theDLG, whereV and E are sets of vertices and
edges, respectively. LetΓ

k(b) = (V, E(b)) andΓ
k(u) = (V (u), E(u))

denote thek(b)-DR and thek(u)-DR graph, whereV (u) is the rep-
resentative set (V (u)

⊂ V ), respectively. ThenΓ = Γ
k(b) ∪ Γ

k(u) ,
E =E(b)

∪ E(u).
Figure 3 shows the statistical properties ofDLG candidates

along thek(u) value: (a) average degree, (b) average shortest path
length, and (c) the product of them, when different segment lengths
of 40, 60, and100 are used. Regardless of the segment lengths,
the average degree slightly increased and the average shortest path
length drastically decreased in the smallk(u) region. The product of
the average degree and the average shortest path length was almost
stable in thek(u) region of more than20. From the standpoint of the
search cost, the smaller product is desired. We adoptedk(u) =30 for
search performance evaluation.

5.3. Search in a Double-Layer Neighborhood Graph

We apply the simple search algorithm in [12] to theDLG, which is
the combination of theMSGSand theBFSalgorithm. The key of
the acceleration of similarity search is in the graph structure as the
index rather than the search algorithm. Owing to the simple search
algorithm, we can suppress the computational load in search other
than the DTW-score calculation since the search algorithm does not
distinguish the edgesE(b) andE(u) in the distinct layers, namely, it
does not need the edge selection asHGSSdoes. Until now, we fo-
cus on the graph structure for the acceleration without consideration
of the search accuracy. In theGSSmethods, we can control the ac-
curacy by search parameterL, the number of starting vertices in the
MSGSalgorithm reported in [23]. Considering the trade-off between
the speed-up and the accuracy, we determinedL=40.

6. EXPERIMENTS

6.1. Experimental Settings

For search performance evaluation, we used the MIT lecture cor-
pus [15] for an utterance data set, which consisted of 54,581 utter-
ances for a training set and 3,000 utterances for a test set. A set of
13-dimensional Mel-Frequency Cepstral Coefficients (MFCCs) was
extracted from the utterance set. The sampling rate was 16 kHz, and
the frame size and the frame shift were 25 ms and 10 ms, respec-
tively. A GMM with 50 mixture components was estimated from
the set of the MFCC vectors in the training set. A 50-dimensional
posteriorgram for each frame in the utterance set was produced from
the GMM. For STD, we chose 20 keywords and picked up 10 distinct
spoken instances for each keyword as the query from the training set.
This was done to set up the similar conditions to those in [3,11–13].
We employed a DTW score normalized by a query segment length
as the dissimilarity, and obtained the 100-best utterances which con-
tained the most similar 100 distinct segments to the query. In the
DTW, the warping path was limited within the bandwidthR = 6
as in [3]. The 100-best-utterance lists, where each list consisted of
100-best utterances for each query, were merged into a single list for
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Fig. 4. Average precision of proposed methodDLG and others;
HGSS, GSS, LSC, andLB. The average precisions of all the meth-
ods were nearly equal regarding P@N .

each keyword. The utterances in the merged single list were sorted
in ascending order of the fusion score calculated likewise to previous
studies; it was done in the same manner as [12,13]. Then the fusion
parameter was set asα=0.5 equally to [3].

We compared the proposed methodDLG with four existing
methods:HGSS[13], GSS[12], LSC[12], andLB [8]. The compar-
ison was carried out regarding two search performance criteria; the
accuracy and the on-line computational costs, i.e., search speed. The
accuracy was evaluated by the average precisions of the sets of top-
X utterances to the ground truth for all the keywords;X =1, 10, N ,
whereN denotes the number of the correct utterances. The search
speed was measured by three ways: the number of the DTW score
calculations, the number of local dissimilarity calculations, and
CPU time. We performed the experiments on a computer system
equipped with an Intel Xeon E7-4870 2.4 GHz.

The HGSSand theGSSmethod employed 10 distinctk-DR
graphs with different segment lengths (20, · · · , 100, 110). The
graph structural parameterk was fixed ask = 100. The search
parameterL for the MSGSalgorithm was set asL = 30. TheDLG
method also employed 10 distinctk(b)-DRgraphs with the same seg-
ment lengths as those of theHGSSand theGSS. In each cluster in
thek(b)-DRgraph, which was the same as that in theHGSS, a vertex
with the highest betweenness centrality was extracted as the rep-
resentative. In the upper layer, thek(u)-DR graph was constructed
from the representative vertices. The graph structural parameters
were set ask(b) =20 andk(u) =30. The number of initial verticesL
for theMSGSalgorithm was fixed asL=40.

6.2. Search Performance Evaluation

The proposedDLG accomplished the speed-up of query-by-example
STD and also at nearly the same accuracy as the other methods. Fig-
ure 4 shows the average precisions of the sets of top-X utterances,
which are denoted by P@X, X = 1, 10, N , of the proposedDLG,
HGSS, GSS, LSC, andLB.

Figures 5(a) and (b) show the average numbers of DTW-score
calculations and local-dissimilarity calculations withlogarithmic
scale, respectively. Compared to theHGSS, the proposedDLG
reduced the numbers of the DTW-score calculations and the local
dissimilarity calculations by34% and 36%, respectively. These
numbers were much smaller than those ofLSCandLB by one order
to two orders of magnitude. One reason of the reduction is ap-
propriate selection of the structural parameters, i.e.,k(b) = 20 and
k(u) = 30 in the DLG. The parameter values satisfied both of low
average degree and small average shortest path length of theDLG,
whose product strongly relates to the number of the calculations.

Figure 6 shows the CPU time required by the five methods with
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logarithmic scale. The three points of each method in Fig. 6, which
are denoted by Max, Ave, and Min, correspond to the maximum, the
average, and the minimum CPU time of all the spoken queries. The
DLG reduced the average CPU time (Ave) by40% than theHGSS
that was the best method of the existing four, and by more than64%
than theGSSthat was the baseline of the graph-based search. The
reduction rate was higher than those of the numbers of the DTW-
score and the local-dissimilarity calculations. This is because the
search algorithmon-line in theHGSSselects vertices referring to its
cluster identification number to limit search space, i.e., theHGSS
incurs the additional computational costs, comparing to the simple
search algorithm in theDLG. Besides, theDLG method operated in
a much shorter average CPU time than theLSCand theLB. The rates
of the required CPU time to those of theLSCand theLB were only
(27/1000) and (13/1000) , respectively.

7. CONCLUSION AND FUTURE WORK

We presented the novel graph-based similarity search method for
fast query-by-example spoken term detection (STD). A newly in-
troduced double-layer neighborhood graph (DLG) index allows the
search method to quickly find similar segments to a given query seg-
ment from an utterance data set by traversing theDLG. The search
in theDLG intuitively resembles driving to a destination by appro-
priately usinggeneral roadsand express highwaysfor travel-time
saving, which correspond to thek-DRgraphs in the base and the up-
per layer, respectively. Compared to the recentHGSS, the proposed
DLG method reduced CPU time by around40%, keeping almost the
same precision. The acceleration of search by theDLG is attributed
to its graph structure and the simple graph search algorithmon-line.

A search method using a layered neighborhood graph as an in-
dex has a lot of room to improve, for instance, a cluster definition
and how to make clusters, extraction of cluster representatives, and
selection of graph structures in the layers.

5219



8. REFERENCES

[1] C. Chelba, T. J. Hazen, and M. Saraçlar, “Retrieval and brows-
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