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ABSTRACT Upper layer
. . . Express highway,
This paper presents a novel double-layer neighborhood graph index

Representative
vertexo

for acceleration of similarity search that accomplishes fast query-

by-example spoken term detection (STD). When a query segment is 19 DR Vertexo

given, our proposed STD method finds similar segments to the query Base layey, graph /GMM posteriorgram
from an utterance data set by efficient similarity search that traverses General road Edge segment

the double-layer neighborhood grapbL(G) with a low computa-
tional cost. The segment is a sequence of Gaussian mixture model
posteriorgram frames and corresponds to a vertex ilDt®. A dis- \gg;wgewni}g;gecgirg?gﬁ&
similarity between vertices is measured by dynamic time warping.
TheDLG consists of two distinct degree-redudeearest neighbor
graphsinabase and an upper layer. The base layer's graph has all fie negative logarithm of the probability that the two posteriorgrams
vertices in t_he data set while the upper Iaygr's graph includes onlye generated from the same distribution [14].
representatives extr_acted from the vertlces'lr_lthe base layer. Byway \we focus on the improvement of the graph-based similarity
of analogy, search in thBLG resembles driving ogeneral roads  search method¥S$ in [12], which uses neighborhood graph index.
andexpress highwayappropriately for travel-time saving. Experi- A vertex and an edge in the graph correspond to a GMM posteri-
mental results on t_he MIT Iectl_Jre corpus _demonstrate that the PI%rgram segment and the relationship between a pair of segments,
posed method achieves CPU time reductiontby and more than  \which is measured by DTW, respectively. Once a graph index is
60% compared to the most recent method and the ordinary graphsonstructedGSScan be performed very fast, which is advantageous
based method, keeping almost the same precision. when search tasks for distinct queries are performed many times in
Index Terms— Spoken term detection, Query-by-example the same data set.
search, Search index, Neighborhood graph, Dynamic time warping I this paper, we present a novel double-layer neighborhood
graph DLG) index forGSSacceleration. Figure 1 shows a diagram
of the DLG. The proposed STD method finds similar segments to a
1. INTRODUCTION given query segment from an utterance data set by traverdiigza
Increasing use of various and large speech data cultivates greawith a simple search algorithm. THeLG consists of two distinct
interest in spoken term detection (STD). A popular approach is tglegree-reduceél-nearest neighbo{DR) graphs in a base and an
convert the speech data into linguistic representation in advance bypper layer. At®-DRgraph in the base layer is constructed from all
automatic speech recognition (ASR), and then to execute search ifje vertices in the data set whilé:& -DR graph in the upper layer is
a text query term [1]. This approach is useful for tasks which ardndependently constructed by using only representatives of the ver-
well-resourced in terms of ASR model construction. In contrast, thdices in the base layer. Intuitively, we can understand the two distinct
demand for approaches in low-resource situations has increased @-aphs in the base and the upper layegeseral roadsandexpress
cently, where ASR is not available [2]. Under such situations, queryhighwaysfor travel-time saving, respectively. We demonstrate in ex-
by-example STD is a useful candidate that does not require any typeerimental results on the MIT lecture corpus [15] that the proposed
of prior linguistic knowledge such as transcriptions, language modDLG method achieves CPU time reduction 4§7% and more than
els, or pronunciation dictionaries [3, 4]. 60% compared to the recent methbt3SSin [13] and the ordinary
Unfortunately, query-by-example STD has drawbacks of lowGSSin [12], respectively, keeping almost the same precision.
performance in accuracy and speed in spite of its potential avail-
ability. The low accuracy is attributed to the fact that STD must 2. RELATED WORK
rely only on the acoustic information without the linguistic knowl- \We review three topics: STD by DTW, similarity search using-a
edge. To solve the accuracy problem, many efforts have been contifearest neighbor graph family as an index, and centrality in graphs.
ued [4-7]. The low speed comes from the fact that an indexing and ) ) o )
a search algorithm are still under development. For the high speed1. Spoken Term Detection Using Dynamic Time Warping
performance, a template matching approach based on dynamic tinvge can categorize fast STD by a template matching approach based
warping (DTW) has been proposed [8-13]. In particular, the methen DTW into two types. One is an exact method that reduces the
ods reported in [8,9, 12, 13] share the common feature and dissimirumber of exact DTW-score calculations by using a DTW-score
larity; a Gaussian mixture model (GMM) posteriorgram as a featurdower bound obtained just when a query segment is given,are.,
of a time frame, and as a dissimilarity between two posteriorgramdjne [3, 8, 9]. The other is an approximate method that is charac-
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Fig. 1. A diagram of a double-layer neighborhood grapt.G)
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terized by the use of an index built from an utterance datafet

line before search [10-13]. A typicaln-line exact method is the

STD using a DTW-score lower bound calculated with a low com-
putational cost in [8], which we callB. Furthermore, by applying

a piecewise aggregation approximation techniqueBpthe speed
performance was improved [9]. In the approximate methods, there>ta"

General road
Start

are some methods using different types of an index; a hash table gen- Target

erated by locality-sensitive hashing3H) [10], ak-means tree [11],

and ak-DRgraph [12,13]. Note that the parametein the k-means (a) OrdinaryGSS (b) DLG basedsSS

algorithm denotes the number of centroids in clusters, and differs ) )

from graph structural parametkrin the k-DR graph. Fig. 2. Conceptual diagram of greedy search paths in (a)kthe
DR graph and (b) th®LG when the greedy search algorithm finds

2.2. Similarity Search Using a Neighborhood Graph Index “Target” closest to the queryfrom “Start”. The path length in the

A k-nearest neighbok(NN) graph has been studied as a search in-DLG is smaller tharg in the k-DR graph.

dex [16-20]. Theé:-NN graph has an edge between a pair of vertices

x andy if = is among thek closest vertices tg or vice versa. Note candidates when a query is given, and performing search i+

that the term “close” means a concept measured by not only a digiraph with a multi-start greedy seard$G$ algorithm followed
tance but also dissimilarity. &-NN graph has useful properties for by a breadth-first searctBES algorithm. We briefly review an
search [16], which resemble those in small-world networks [21, 22]ordinary and a hierarchic&SS12, 13], in terms of the commok-

both a tendency of like to associate with like and a very small averDR graph and each search algorithm, to shed light on our proposed
age shortest path length. These properties allow a search algorithmethod.

to reach the vertex closest to a given query vertex from an initial .
vertex chosen at random with a few steps. In particulak-BR 4.1 Ordlnary.GSS

graph, which is a member é£NN graph family and is improved for A k-DRgraph is a subgraph ofiaNNgraph, and has fewer edges (a
achieving better search performance, has been applied to a varieijaller degree) [16]. The degree reduction is effective for fagplyr

of data sets: large-scale documents [16], images [23], GMMs with §¢arch. This is because a computational cost of a graph search algo-
Kullback-Leibler divergence as a dissimilarity [24], and GMM pos- rithm with a greedy manner correlates with the product of an average

teriorgram sequences [12, 13]. degree and an average shortest path length, and the averagetshortes
path length of thek-NN graph is already small to some extent for
2.3. Centrality in Graphs its small-world property [16]. Furthermore, to maintain navigation

A proposed double-layer neighborhood grafiiG) needs repre- function of a small-world graph [27], the-DR graph is designed so
sentatives of all the vertices in the base layer for constructing the ughat a greedy search algorithm can reach each vertex from at least its
per layer. We first prepare clusters, i.e., subgraphs in the base lay&-th closest vertex as theNN graph.

in the same manner as that in [13]. We next extract a representative The ordinaryGSSemploys a combination of a multi-start greedy
vertex from each subgraph by usiogntrality. Centrality is one of ~search MSG$ and a breadth-first searcBES to find the Top?'
structural properties that characterize a graph (or network) [2&}. V  vertices closest to a query vertex [12]. TMSG Salgorithm starting
ious types of centrality have been proposed, for instance, degree ceffiom multiple initial vertices finds the closest vertex to the query at
trality, closeness centrality, graph centrality, betweenness centrality high search success rate, and collects a tentative set of te top-
and eigenvector centrality. In these, the betweenness centrality ortices (a tentative toff- set) on the paths. The successBES

a vertex in a graph is popular and widely used. The betweennegdgorithm determines the tdp-set by updating the tentative top-
centrality is basically an appearance frequency of a vertex on shorff' set as follows. Th&FSalgorithm repeatedly adopts a vertex at
est paths between all the pairs of vertices in the graph. Moreovewhich theMSGSalgorithm terminated in the tentative tdpas a root

a fast algorithm for calculating the betweenness centrality has beeffnitial) vertex in ascending order of its dissimilarity to the query.
reported in [26]. We adopt the betweenness centrality as a measuk&ch iteration terminates if the tentative tdpset is not updated at

to select a representative of a subgraph, as detailed in Section 5.1.a current depth.

4.2. Hierarchical GSS
] 3. PROBLEM FORMULATION ) ) The HierarchicalGSSHGSS achieves faster STD than the ordinary
We deal with query-by-example STD as the following problem 'de”'GSSby dynamically reducing degre@s-line [13]. When ak-DR
tical to that in [12] (For details to [12]). Suppose that a set of GMM graph is constructed referring toZ&-NN list (K > k), hierarchical
posteriorgram sequences produced from an utterance data set, Mgigstering for the vertices in the graph is simultaneously performed
tiple query GMM posteriorgram segmerns(i=1,2,-- - ,m) pro-  py ysing the same list. Each cluster is regarded as a supernode in
duced from spoken instances for an identical query keyword, a dethe hierarchical structure and given a cluster identification number
inition of a normalized DTW score betwegnandz (x isa GMM  (CIDN). Note that the edges in theDR graph are maintained with
posteriorgram segment), and the number of resultant utterafices o change. ThéiGSSexecutes a combination of MSGSand a
are given. Then, efficiently find th&-best utterances based on a prsalgorithm in thek-DR graph, which differs from the search al-
fusion score of the multiple query GMM posteriorgram segments. gorithm in the ordinaryGSSin added edge-selection function (or
vertex-selection function) using the CIDNs. TMSGSalgorithm
4. GRAPH-BASED SIMILARITY SEARCH selects vertices whose DTW-scores have to be calculated from all
We solve the foregoing problem by a graph-based similarity searchdjacent vertices based on their CIDNSs, i.e., it reduces the number
method (GS$ characterized by the following three points; pre- of DTW-score calculations. ThBFSalgorithm terminates early by
constructing multiplek-DR graphs as index candidates for a query using the CIDN. Thus thelGSSimits the search space, resulting in
segment with any length, selecting an appropriate index from thehe reduction of the computational cost.
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. Section 6.1); an average degree, an average shortest path lemyth, a
i) their product that relates to a computational cost in a graph search.
'{ Note that thek value affects both computational cost in search and
search accuracy. The search accuracy is in particular controlled by
-s both thek value and search parameter which is the number of
starting vertices in MSGSalgorithm [23]. In this paper, we adopted
k® =20 based on our observational results.
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K kY The DLG is built by a fusion of thek®-DR and thek®-DR
(a) Average degree (b) Average shortest path length o 50 The graph fusion is simply expressed as follows. ILet
0 (V, E) denote theDLG, whereV and E are sets of vertices and

y Segment length1§§ -~ edges, respectively. Lat, o = (V, EY) andT oy = (V¥, E®)
8 h denote thek®-DR and thek®-DR graph, whereV’® is the rep-
8 60 :::\w resentative set® C V), respectively. Thed® = T',¢ U [\,
& ol merereeneeereeaaned E—EO U E®.

0 Figure 3 shows the statistical properties BEG candidates

0
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along thek® value: (a) average degree, (b) average shortest path

kY length, and (c) the product of them, when different segment lengths
(c) Product of average degree and average shortest path length ot 4 60, and 100 are used. Regardless of the segment lengths,
. . . the average degree slightly increased and the average shortest path
Fig. 3. Structural properties of double-layer neighborhood graphﬁ . . .

- - ) ength drastically decreased in the smig region. The product of

(DLG) with segment lengths of0, 60, and100 alongk™: (a) av the average degree and the average shortest path length was almost
erage degree, (b) average shortest path length, and (.C) protiuct Sable in the:® region of more thar20. From the standpoint of the
average degree and average shortest path length, which correlatzeesarch cost, the smaller product is desired. We addgtée 30 for
with a computational cost in search. ' ’

search performance evaluation.

5. PROPOSED GSS METHOD USING A DLG INDEX 5.3. Search in a Double-Layer Neighborhood Graph

We tackle the acceleration of similarity search for fast query-by-V& apply the simple search algorithm in [12] to &G, which is
example STD. A key is a novel search index, a double-layer neighth® combination of thé1SGSand theBFSalgorithm. The key of
borhood graph DLG). Figure 2 shows a conceptual diagram of the acceleration of similarity search is in the graph structure as the
greedy paths in thé-DR graph and theDLG when the greedy index rather than the search algorithm. Owing to the simple search
search algorithm starting from “Start” vertex finds “Target” vertex algorithm, we can suppress the computational load in search other
closest to the given query. In Fig. 2, theDLG decreases the path than the DTW-score calculation since the search algorithm does not
length by half, compared to tHeDR graph. TheDLG can reduce an  distinguish the edge® andE@ in the distinct layers, namely, it
average shortest path length by controlling the structural parameté&oes not need the edge selectior-#3SSdoes. Until now, we fo-

k in the two distinct layers. Note that the proposed method usingys on the graph structure for the acceleration without consideration
the DLG differs from the recentHGSSin both the index structure ©f the search accuracy. In i@ Smethods, we can control the ac-
and the search algorithm. In simple terms, the proposed methdgHracy by search parametgr the number of starting vertices in the

transfers a part of computational costs during search itB&Sto
a cost for constructing its index structui@!, G.

5.1. Representative Vertices

TheDLG consists of two distinck-DR graphs; & ®-DRin the base
layer and a®-DR graph in the upper layer. The”-DR graph is

MSGSalgorithm reported in [23]. Considering the trade-off between
the speed-up and the accuracy, we determibed!0.

6. EXPERIMENTS

6.1. Experimental Settings

ordinarily constructed from all the vertices (segments) in a given Utfor search performance evaluation, we used the MIT lecture cor-
terance data set while thé-DRgraph is independently constructed pys [15] for an utterance data set, which consisted of 54,581 utter-
from only representative vertices in the base layer. Each representances for a training set and 3,000 utterances for a test set. A set of
tive is a vertex with the highest vertex (node) betweenness centrality3-dimensional Mel-Frequency Cepstral Coefficients (MFCCs) was
in a subgraph in thé:®-DR graph. The subgraph is defined as a extracted from the utterance set. The sampling rate was 16 kHz, and
graph consisting of the following vertex set and edge set. The verteghe frame size and the frame shift were 25 ms and 10 ms, respec-
setis a set of vertices that are given the same CIDN by the hierarchfiyely. A GMM with 50 mixture components was estimated from
cal clustering described in Section 4.2. The edge set is obtained Qife set of the MFCC vectors in the training set. A 50-dimensional
removing between-cluster edges and keeping within-cluster edges fibsteriorgram for each frame in the utterance set was produced from
the k®-DR graph. A search algorithm starting from the representathe GMM. For STD, we chose 20 keywords and picked up 10 distinct
tive seems to reach any vertex in the subgraph with a few steps wit§poken instances for each keyword as the query from the training set.
high probability because the representative most frequently appeatsis was done to set up the similar conditions to those in [3,11-13].
in shortest paths of all the pair vertices in the subgraph. We employed a DTW score normalized by a query segment length
. as the dissimilarity, and obtained the 100-best utterances which con-
5.2. Double-Layer Neighborhood Graph tained the most similar 100 distinct segments to the query. In the
A DLG diagram is shown in Fig. 1. To determine structural param-DTW, the warping path was limited within the bandwidih= 6
etersk® andk® of the graphs, we verified statistical properties onas in [3]. The 100-best-utterance lists, where each list consisted of
k of an ordinaryk-DR graph for the MIT lecture corpus (detailed in 100-best utterances for each query, were merged into a single list for
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Fig. 4. Average precision of proposed meth@d G and others;

HGSS GSS LSC andLB. The average precisions of all the meth-

ods were nearly equal regarding R@ o 103
8T
@2 S 10° t
each keyword. The utterances in the merged single list were sorted © E E
in ascending order of the fusion score calculated likewise to previous £ £ 10 _40%
studies; it was done in the same manner as [12,13]. Then the fusion o5 °
a g | Max
parameter was set as=0.5 equally to [3]. c8 1 Ave
We compared the proposed methBdl G with four existing Min 64%
methodsHGSY13], GSY12], LSC[12], andLB [8]. The compar- 1071 - 0
ison was carried out regarding two search performance criteria; the DLG Max GSS LSC LB

accuracy and the on-line computational costs, i.e., search speed. Th

accuracy was evaluated by the average precisions of the sets of topig. 6. CPU time of proposed methdl_G and othersHGSS GSS
X utterances to the ground truth for all the keywords=1, 10, N, LSGC andLB. DLG reduced the average CPU time4y% and64%
where N denotes the number of the correct utterances. The searalompared tdHGSSandGSS respectively.

speed was measured by three ways: the number of the DTW score

calculations, the number of local dissimilarity calculations, and

CPU time. We performed the experiments on a computer SysterLg)garithmic scale The three points of each method in Fig. 6, which
equipped with an Intel Xeon E7-4870 2.4 GHz. are denoted by Max, Ave, and Min, correspond to the maximum, the

i d the minimum CPU time of all the spoken queries. The
The HGSSand theGSSmethod employed 10 distindt-DR average, an -
graphs with different segment lengthg0(--- ,100,110). The DLG reduced the average CPU time (Ave) Y% than theHGSS
graph structural parametdr was fixed ask — 100 ’ The search that was the best method of the existing four, and by more GHéh
parametetl, for the MSGSalgorithm was set aé — 50 TheDLG than theGSSthat was the baseline of the graph-based search. The

method also employed 10 distine? -DR graphs with the same seg- reduction rate was higher than those of the numbers of the DTW-
ment lengths as those of théGSSand theGSS In each cluster in  SCO'€ and the local-dissimilarity calculations. This is because the
the k9 -DR graph, which was the same as that in HBSS a vertex search algorithnon-linein theHGSSselects vertices referring to its

with the highest betweenness centrality was extracted as the re luster |dent|f|(_:§1t|on number to limit search space, "e"ms
resentative. In the upper layer, th&-DR graph was constructed ncurs the additional computational costs, comparing to the simple

from the representative vertices. The graph structural parameter€arch algorithm in thBLG. Besides, th®LG method operated in
were set a2® — 20 andk® —= 30. The number of initial vertices a much shorter average CPU time thanlts€and thelLB. The rates

for the MSGSalgorithm was fixed ag — 40 of the required CPU time to those of th&Cand thel. B were only
' (27/1000) and (13/1000) , respectively.

6.2. Search Performance Evaluation

The propose®LG accomplished the speed-up of query-by-example
STD and also at nearly the same accuracy as the other methods. F%
ure 4 shows the average precisions of the sets of¥fopiterances,
which are denoted by P®, X = 1,10, N, of the proposedLG,
HGSSGSSLSC andLB.

Figures 5(a) and (b) show the average numbers of DTW-scor
calculations and local-dissimilarity calculations wikbgarithmic

7. CONCLUSION AND FUTURE WORK

le presented the novel graph-based similarity search method for
st query-by-example spoken term detection (STD). A newly in-
troduced double-layer neighborhood grajpiiG) index allows the
search method to quickly find similar segments to a given query seg-
fent from an utterance data set by traversingdh&. The search

In the DLG intuitively resembles driving to a destination by appro-

scale respectively. Compared to tHdGSS the proposedLG priately usinggeneral roadsand express highwayfor travel-time

reduced the numbers of the DTW-score calculations and the IocglaVilng' which cortfeslporéj to tMeDthgr{ahphs ig;gt?sbatlﬁe and the lép'
dissimilarity calculations by34% and 36%, respectively. These per layer, respectively. Lompared to the re Sthe propose

numbers were much smaller than thosé.8CandLB by one order DLG methc_;d_ reduced CPU time by aroudibs, keepln_g alm_ost the

to two orders of magnitude. One reason of the reduction is ap§arne precision. The accelerat_lon of search byOh6 is at_trlbgted
propriate selection of the structural parameters, k&) = 20 and to its graph structure anq the simple graph search algonthiiine .
k™ = 30 in the DLG. The parameter values satisfied both of low A search method using a layered neighborhood graph as an in-
average degree and small average shortest path length BILGBe dex has a lot of room to improve, for instance, a cluster definition

whose product strongly relates to the number of the calculations and how to make clusters, extraction of cluster representatives, and

Figure 6 shows the CPU time required by the five methods withSelectlon of graph structures in the layers.

5219



[1] C. Chelba, T. J. Hazen, and M. Saraclar, “Retrieval and brows[l4] T. J. Hazen, W. Shen, and C. White, *

[2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

8. REFERENCES

ing of spoken content,"IEEE Signal Process. Magvol. 25,
no. 3, pp. 39-49, May 2008.

J. Tejedor, M. Fapo, I. Spke, J. H. Cernocly, and

F. Grezl, “Comparison of methods for Ianguage—dependenL1
and language-independent query-by-example spoken term de-
tection,” ACM Trans. Inform. Systvol. 30, no. 3, August 2012.

Y. Zhang and J. R. Glass, “Unsupervised spoken keyword spot[1
ting via segmental DTW on Gaussian posteriorgramsirioc.

Int. Workshop on Acoustic Speech Recognition & Understand-
ing, 2009, pp. 398-403.

C.-A. Chan, C.-T. Chung, Y.-H. Kuo, and L.-S. Lee, “Towar 1
unsupervised model-based spoken term detection with spokén
gueries without annotated data,” Rroc. Int. Conf. Acoustics,
Speech, Signal Proced&EE, May 2013, pp. 8550—8554.

S. Soldo, M. Magimai.-Doss, J. Pinto, and H. Bourlard, “Pos-[
terior features for template-based ASR,” Rmoc. Int. Conf.
Acoustics, Speech, Signal ProcdE€E, May 2011, pp. 4864—
4867.

M. Huijbregts, M. McLaren, and D. van Leeuven, “Unsuper-
vised acoustic sub-word unit detection for query-by-example
spoken term detection,” iRroc. Int. Conf. Acoustics, Speech,
Signal ProcesdEEE, May 2011, pp. 4436-4439.

H.Wang, T. Lee, C.-C. Leung, B. Ma, and H. Li, “Using paral-
lel tokenizers with DTW matrix combination for low-resource
spoken term detection,” iRroc. Int. Conf. Acoustics, Speech,

Signal ProcesSEEE, May 2013, pp. 8545-8549. [21

Y. Zhang and J. R. Glass, “An inner-product lower-bound esti-
mate for dynamic time warping,” iRroc. Int. Conf. Acoustics,
Speech, Signal ProcesEEE, 2011, pp. 5660-5663.

Y. Zhang and J. R. Glass, “A piecewise aggregate approxi-
mation lower-bound estimate for posteriorgram-based dynami
time warping,” inProc. Interspeech2011, pp. 1909-1912.

[2

A. Jansen and B. V. Durme, “Indexing raw acoustic features
for scalable zero resource search,"Hroc. Interspeech2012.

G. Mantena and X. Anguera, “Speed improvements
to information-retrieval-based dynamic time warping using
heiarchical k-means clustering,” Proc. Int. Conf. Acoustics,
Speech, Signal Proces&EE, May 2013, pp. 8515-8519.

K. Aoyama, A. Ogawa, T. Hattori, T. Hori, and A. Nakamura,
“Graph index based query-by-example search on a large speech

[19

[20

[25

5]

6]

7]

18]

]

]

2]

23]

24]

]

data set,” ifProc. Int. Conf. Acoustics, Speech, Signal Process[26]

IEEE, May 2013, pp. 8520-8524.
K. Aoyama, A. Ogawa, T. Hattori, T. Hori, and A. Naka-

mura, “Zero-resource spoken term detection using hierarchicdR 7]

graph-based similarity search,” Proc. Int. Conf. Acoustics,
Speech, Signal Proced&EE, May 2014, pp. 7093-7097.

5220

Query-by-example spo-
ken term detection using phonetic posteriorgram templates,” in
Proc. Int. Workshop on Acoustic Speech Recognition & Under-
standing 2009, pp. 421-426.

J. Glass, T. J. Hazen, L. Hetherington, and C.Wang, “Analysis
and processing of lecture audio data: Preliminary investiga-
tions,” in Proc. HLT-NAACL.2004, pp. 9-12.

K. Aoyama, K. Saito, T. Yamada, and N. Ueda, “Fast similarity
search in small-world networks,” i€@omplex Networks: Int.
Workshop on Complex Networlg&. Menezes et al., Ed., 2009,
pp. 185-196, Springer.

T. B. Sebastian and B. B. Kimia, “Metric-based shape retrieval
in large databases,” iRroc. Int. Conf. Pattern Recognitipn
2002, vol. 3, pp. 291-296.

J. Sakagaito and T. Wada, “Nearest first traversing graph for
simultaneous object tracking and recognition,”Hroc. IEEE
Conf. Computer Vision and Pattern Recognitidune 2007,
pp. 1-7.

K. Hajebi, Y. Abbasi-Yadkori, H. Shahbazi, and H. Zong, “Fast
approximate nearest-neighbor search with k-nearest neighbor
graph,” inProc. Int. Joint Conf. Artificial Intelligence2011,

pp. 1312-1317.

J.Wang and S. Li, “Query-driven iterated neighborhood graph
search for large scale indexing,” roc. ACM Multimedia
October 2012, pp. 179-188.

] D.J.Watts and S. H. Strogatz, “Collective dynamics of ‘small-

world’ networks,” Nature vol. 393, pp. 440-442, June 1998.

J. Kleinberg, “The small-world phenomenon: An algorith-
mic perspective,” irProc. ACM Symp. Theory of Computing
SIGACT, May 2000, pp. 163-170.

K. Aoyama, K. Saito, H. Sawada, and N. Ueda, “Fast approxi-
mate similarity search based on degree-reduced neighborhood
graph,” inProc. ACM SIGKDDD Conf. Knowledge Discovery
and Data Mining August 2011, pp. 1055-1063.

K. Aoyama, S. Watanabe, H. Sawada, Y. Minami, N. Ueda, and
K. Saito, “Fast similarity search on a large speech data set with
neighborhood graph indexing,” iRroc. Int. Conf. Acoustics,
Speech, Signal Proced&EE, March 2010, pp. 5358-5361.

L. C. Freeman, “Centrality in social networks: conceptual clar-
ification,” Social Networksvol. 1, pp. 215-239, 1978.

U. Brandes, “A faster algorithm for betweenness centrality,”
Journal of Mathematical Sociologyol. 25, no. 2, pp. 163—
177, 2001.

J. M. Kleinberg, “Navigation in a small world,Nature vol.
406, pp. 845, August 2000.



