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ABSTRACT

This paper introduces a new corpus of read English speech, suitable
for training and evaluating speech recognition systems. The Lib-
riSpeech corpus is derived from audiobooks that are part of the Lib-
riVox project, and contains 1000 hours of speech sampled at 16 kHz.
We have made the corpus freely available for download, alongwith
separately prepared language-model training data and pre-built lan-
guage models. We show that acoustic models trained on LibriSpeech
give lower error rate on the Wall Street Journal (WSJ) test sets than
models trained on WSJ itself. We are also releasing Kaldi scripts
that make it easy to build these systems.

Index Terms— Speech Recognition, Corpus, LibriVox

1. INTRODUCTION

The rapid increase in the amount of multimedia content on theIn-
ternet in recent years makes it feasible to automatically collect data
for the purpose of training statistical models. This is particularly true
when the source data is already organized into well curated,machine
readable collections. The LibriVox project1, a volunteer effort, is
currently responsible for the creation of approximately 8000 public
domain audio books, the majority of which are in English. Most of
the recordings are based on texts from Project Gutenberg2, also in
the public domain.

Although the use of audio books for building synthetic voices [1,
2] has previously been investigated, we are not aware of any freely
available read speech corpus in English that is suitable fortraining
and testing speech recognition systems, and which is as large scale as
the one we present here. The volunteer-supported speech-gathering
effort Voxforge3, on which the acoustic models we used for align-
ment were trained, contains a certain amount of LibriVox audio, but
the dataset is much smaller than the one we present here, witharound
100 hours of English speech, and suffers from major gender and per-
speaker duration imbalances.

This paper presents the LibriSpeech corpus, which is a read
speech data set based on LibriVox’s audio books. The corpus
is freely available4 under the very permissive CC BY 4.0 li-
cense [3] and there are example scripts in the open source Kaldi
ASR toolkit [4] that demonstrate how high quality acoustic models
can be trained on this data.

Section 2 presents the long audio alignment procedure that we
used in the creation of this corpus. Section 3 describes the structure
of the corpus. In Section 4 we describe the process we used to build

1https://librivox.org/
2http://www.gutenberg.org
3http://www.voxforge.org
4http://www.openslr.org/12/

the language models, which we make available with this corpus. Fi-
nally in Section 5 we present experimental results on modelstrained
on this data set, using both the LibriSpeech dev and test setsand
Wall Street Journal (WSJ) [5] test sets.

2. AUDIO ALIGNMENT

Most acoustic model training procedures expect that the training data
come in the form of relatively short utterances, usually up to few
tens of seconds in length, each with corresponding text. Therefore
we need to align the audio recordings with the correspondingtexts,
and split them into short segments. We also aim to exclude seg-
ments of audio that might not correspond exactly with the aligned
text. Our procedure is similar to that described in [6], and consists
of two stages. (Note: we have since become aware of a different,
phone-based approach [7]).

2.1. Text preprocessing, lexicon and LM creation

Each book’s text is normalized by converting it into upper-case, re-
moving the punctuation, and expanding common abbreviations and
non-standard words [8]. Then the SRILM toolkit [9] is used totrain
a Witten-Bell [10] smoothed bigram language model on the text of
that book. We base our lexicon on CMUdict, from which we remove
the numeric stress markers; the pronunciations for out-of-vocabulary
(OOV) words are generated with the Sequitur G2P toolkit [11]. In
order to avoid possible problems with recognizing excessively long
audio recordings, the audio chapters are split into segments of up
to 30 minutes in length. The audio is then recognized using the
gmm-decode-fasterdecoder from the Kaldi toolkit, trained on the
VoxForge dataset. For this first decoding pass we use a triphone
model discriminatively trained with Boosted MMI [12], based on
MFCC [13] features processed with frame-splicing over 7 frames,
followed by LDA, followed by a global semi-tied covariance (STC)
transform [14].

2.2. First alignment stage

We use the Smith-Waterman alignment algorithm [15] to find the
best single region of alignment between the recognized audio and the
chapter text. This is like doing Levenshtein alignment [16], except
we do not require it to consume the whole reference or hypothesis
from the beginning to end, and it also has tunable rather thanfixed
weights for the different kinds of errors. From this we take the largest
single region of similarity (which in most cases would be theentire
chapter) and discard the rest, if any. Within that region of similarity,
we mark a transcript word as being part of an “island of confidence”
if it is part of an exact match with the reference whose lengthis 12
phones or more. We now split the audio into shorter segments,of
35 seconds or less, using a dynamic programming algorithm. We
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Fig. 1. Example grammar (G) acceptor for the second stage of the alignment algorithm

a)
Reference:A family of ten children will be always called a fine family ...
Hypothesis: sil A FAMILY OF TEN CHILDREN WILL #del ALWAYS #ins0016 b iy #ins0017 CALLED A FINE FAMILY sil
Explanation: Transposition of “be” and “always”.

b)
Reference:... upon her arm and ... I rushed towards her ...
Hypothesis: sil UPON HER ARM #ins0020s #ins0021 sil AND ... I RUSHED sil #ins0054 ay r ah sh t #ins0055 TOWARDS HER
Explanation: Reader pronounces “arms” instead of “arm” and repeats “I rushed”.

c)
Reference:Morning dawned before I arrived at the village of Chamounix ...
Hypothesis: sil MORNING DAWNED BEFORE I ARRIVED AT THE VILLAGE OF sil #ins0018 sh ah m ow n iy #ins0021
Explanation: G2P error– the auto-generated dictionary entry is “CHAMOUNIX CH AE M UW N IH K S”, which is wrong.

Fig. 2. Examples of typical text-audio discrepancies detected insecond stage decoding. a) Chapter 1 of “Northanger Abbey” byJ. Austen,
read by Kara Shallenberg; b) Chapter 23 of “Frankenstein” byM. Shelley, read by Hugh McGuire; c) Chapter 15 of “Frankenstein” by M.
Shelley, read by Gord Mackenzie

only allow it to split on silence intervals whose length is atleast 0.5
second and which are inside an island of confidence. This allows
us to generate, with reasonable confidence, a candidate textfor each
split piece of audio.

2.3. Second alignment stage

The goal of the second stage is to filter out segments where thecan-
didate text obtained by the first stage has a high likelihood of be-
ing inaccurate. Possible sources of text-audio mismatch include in-
accuracies in Project Gutenberg texts, reader-introducedinsertions,
deletions, substitutions and transpositions, and involuntary disfluen-
cies [1, 17]. Other significant sources of mismatch that we noticed
are inaccurate text normalization and grapheme-to-phoneme errors
in the automatically generated pronunciations.

In this second stage of alignment, we use a custom-generated
decoding graph for each segment. The decoding graph, diagrammed
in Figure 1, is formed from a combination of the linear sequence
of words in the transcript with a generic phone-level bigramlan-
guage model. Our aim is to use the phone-level bigram to allowar-
bitrary insertions between words in the transcript, or replacement of
words in the transcript; we will reject any utterance whose decoding
shows any deviation from the transcript. We also experimented with
a single-phone filler model to model errors, but found the phone-
level bigram was more effective at finding segments with inaccurate
transcripts.

The most obvious way to generate the decoding graph would
be to include multiple copies of the phone-level bigram graph, but
this would lead to very large decoding graphs. Instead we usea
single copy of the bigram part of the decoding graph (Figure 1), but
we modify the decoder so that after entering the bigram part of the

model from word-positionx in the transcript, we may only return at
positionx (corresponding to an insertion between words) or position
x+1 (corresponding to a substitution or deletion of a word). This
is like a pushdown transducer that can only store one item in the
pushdown store.

In this second decoding stage, we use a speaker-adapted
model [18, 19] with fMLLR transforms estimated at the speaker
level, based on the transcript generated by the first decoding pass.

In most cases this algorithm succeeds in detecting text-audio
mismatches, especially for native speakers. There are alsoinstances
of false rejections. A common problem is, for example, the “assimi-
lation” of a short, 1-2 phone word into a neighboring silenceperiod,
which leads to an erroneous detection of deletion from the audio.
However, since the original amount of audio in the audiobooks is so
large, we can afford to lose a certain percentage of it. Figure 2 shows
examples of the kinds of errors that we typically find by applying this
method.

The whole alignment process took approximately 65 hours on
two Amazon EC2 cc2.8xlarge instances, to produce an initialset of
aligned audio of size approximately 1200 hours.

2.4. Data segmentation

The second stage of alignment, which we described above, gives
us a subset of the audio segments of length up to 35 seconds, that
have a good likelihood of having accurate transcripts. Nextwe break
these long segments up into smaller segments. We used two different
methods for this. For training data, our rule was to split on any si-
lence interval longer than 0.3 seconds. For test data, we only allowed
splits if those intervals coincided with a sentence break inthe refer-
ence text. The idea was that data split at sentence breaks is likely to
be easier to recognize from a language modeling point of view.
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3. DATA SELECTION AND CORPUS STRUCTURE

3.1. Data selection

To select the audio recordings for inclusion into the corpuswe use
LibriVox’s API5 to collect information about the readers, the audio
book projects in which they participated, and the chapters of books
that they read. The URLs for audio files and reference texts were
obtained by matching the information from LibriVox’s API with the
metadata records from the Internet Archive6 and Project Gutenberg’s
RDF/XML files7. For a small fraction of audiobooks no exact match
for the title was found in Project Gutenberg, so to improve coverage
we allowed a fuzzy matching of titles.

In order to guarantee that there was no speaker overlap between
the training, development and test sets, we wanted to ensurethat
each recording is unambiguously attributable to a single speaker. To
that end we exclude such LibriVox genres as, for example, “Dra-
matic Reading”, which include predominantly multi-readeraudio
chapters. As an extra precaution, in the final post-processing step
of the alignment processing the recordings are processed with the
LIUM speaker diarization toolkit [20] to automatically detect multi-
speaker chapters. A custom GUI application was written, that makes
use of the text-audio alignment information and the speakerdiariza-
tion information, to allow for quick inspection and filtering out of
the remaining multi-speaker recordings. This applicationalso made
it possible to quickly produce gender information for the speakers
and to discard a small number of recordings that had excessive au-
dio quality problems.

We ensured a gender balance at the speaker level and in terms of
the amount of data available for each gender.

3.2. Corpus partitions

The size of the corpus makes it impractical, or at least inconvenient
for some users, to distribute it as a single large archive. Thus the
training portion of the corpus is split into three subsets, with approx-
imate size 100, 360 and 500 hours respectively. A simple automatic
procedure was used to select the audio in the first two sets to be, on
average, of higher recording quality and with accents closer to US
English. An acoustic model was trained on WSJ’s si-84 data subset
and was used to recognize the audio in the corpus, using a bigram
LM estimated on the text of the respective books. We computedthe
Word Error Rate (WER) of this automatic transcript relativeto our
reference transcripts obtained from the book texts.

The speakers in the corpus were ranked according to the WER of
the WSJ model’s transcripts, and were divided roughly in themiddle,
with the lower-WER speakers designated as “clean” and the higher-
WER speakers designated as “other”. From the “clean” pool, 20
male and 20 female speakers were drawn at random and assignedto a
development set. The same was repeated to form a test set. Foreach
dev or test set speaker, approximately eight minutes of speech are
used, for total of approximately 5 hours and 20 minutes each.Note
that, as mentioned in Section 2.4, we use a different segmentation
procedure for development and test data, than for training data.

The rest of the audio in the “clean” pool was randomly split into
two training sets with approximate size 100 and 360 hours respec-
tively. For each speaker in these training sets the amount ofspeech
was limited to 25 minutes, in order to avoid major imbalancesin
per-speaker audio duration.

5https://librivox.org/api/info
6http://blog.archive.org/2011/03/31/how-archive-org-items-are-

structured/
7http://www.gutenberg.org/wiki/Gutenberg:OfflineCatalogs

subset hours
per-spk
minutes

female
spkrs

male
spkrs

total
spkrs

dev-clean 5.4 8 20 20 40
test-clean 5.4 8 20 20 40
dev-other 5.3 10 16 17 33
test-other 5.1 10 17 16 33

train-clean-100 100.6 25 125 126 251
train-clean-360 363.6 25 439 482 921
train-other-500 496.7 30 564 602 1166

Table 1. Data subsets in LibriSpeech

The “other” pool was similarly split into test and development
sets, and a single training set of approximately 500 hours. For this
pool, however we did not choose the development and test setsat
random; instead we deliberately chose more challenging data. The
WER we computed using the WSJ models was used to rank the
speakers in order of increasing difficulty, and the speakersfor the
test and development set were randomly chosen from the thirdquar-
tile of this sorted list. Table 1 provides a summary of all subsets in
the corpus.

4. LANGUAGE MODELS

To make it easy to reproduce the results we report here, we have re-
leased language model training data and pre-built languagemodels
online8, along with the text data that we used to build the language
models. The language model training material is carefully selected
to avoid any overlap with the texts which appear in the test and de-
velopment sets.

The source material for these language models is Project Guten-
berg books. All books, in their entirety, on which the test and de-
velopment sets are based were filtered out, as well as any book
whose title has cosine similarity, over letter 3-grams, greater than
0.7 with any of the titles of these books. After filtering on titles,
the text of approximately 22 000 candidate books was downloaded
from Project Gutenberg. An inverted index of all 5-grams, with stop
words deleted, is built for the books in the test and development
sets. All candidate books are then checked against this index and
each book for which more than one percent of the 5-grams which
appear in it, appear in any of the books in the test and development
sets, is removed from the candidate set. The method is effective for
finding shared text such as, for example, popular fairy taleswhich
are present in more than one fairy tales collection, long citations of
poems in other works, and so on. We used other heuristics to also
filter out texts such as numeric tables, sequences from the Human
Genome Project, and other types of documents that were deemed
inappropriate for language model training.

After the above steps, approximately 14 500 public domain
books, containing around 803 million tokens in total and 900000
unique words, remained.

To select a lexicon, the words in the corpus were ranked by fre-
quency, and the 200 000 most frequent words were selected. Around
one third of these words are present in the CMU pronunciationdic-
tionary, accounting for around 97.5% of all tokens in the evaluation
sets; we generated pronunciations for the remaining words using the
Sequitur G2P toolkit [11]. Modified Kneser-Ney smoothed 3- and
4-grams [21, 22] are trained. The perplexity for the 3-gram model
is 170, and the out of vocabulary token rate is approximately0.4%

8http://www.openslr.org/11/
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on average. For the 4-gram language model the perplexity is around
150.

5. EXPERIMENTS

In this section we present decoding results using models trained
using various amounts of LibriSpeech data, and on WSJ data, on
both LibriSpeech and WSJ test sets. The recordings available from
LibriVox are not completely ideal for training acoustic models for
other domains, because the audio is MP3-compressed and because
the site’s guidelines for upload recommend noise removal9 and vol-
ume normalization10. These practices are not consistently enforced,
however, so there is a significant fraction of noisy and non-processed
audio available, combined with audio that has been subjected to au-
tomatic noise removal.

In order to assess the performance of the acoustic models on
non-compressed audio we use the Wall Street Journal read speech
corpus [5], as a baseline. We employ language models, trained on the
text material the WSJ corpus provides, in conjunction with acoustic
models trained on the LibriSpeech data to decode WSJ’s test sets,
and compare the results with those for state-of-the-art models trained
on WSJ’s own si-284 set (which contains 82 hours of speech data).
The WSJ results we present in Table 2 are for the “open-vocabulary”
(60K) test condition, using not the standard 60K word dictionary
supplied with WSJ but an extended version that we built to cover
more of the words that appear in the WSJ language models. For the
language model we used a pruned version of the standard trigram
language model that is distributed with the WSJ corpus. The acoustic
models, referred to asSAT in the tables, are speaker-adapted GMM
models [18, 19], and those referred to asDNN, are based on deep
neural networks with p-norm non-linearities [23], trainedand tested
on top of fMLLR features. The models estimated on LibriSpeech’s
training data are named after the amount of audio they were built
on. The models marked with460hare trained on the union of the
“train-clean-100” and “train-clean-360” subsets, and those marked
with 960hare trained on all of LibriSpeech’s training sets.

eval’92 dev’93 eval’93
Acoustic model

LS

SAT 100h 5.72 10.10 9.14
SAT 460h 5.49 8.96 7.69
SAT 960h 5.33 8.87 8.32
DNN 100h 4.08 7.31 6.73
DNN 460h 3.90 6.75 5.95
DNN 960h 3.63 6.52 5.66

WSJ
SAT si-284 6.26 9.39 9.19
DNN si-284 3.92 6.97 5.74

Table 2. WERs on WSJ’s test sets under the “open vocabulary”
(60K) test condition

Similarly LibriSpeech’s language models are used with WSJ
acoustic models to decode LibriSpeech’s test sets. For these tests the
results in Table 3 were obtained by rescoring with the full 4-gram
language model from Section 4.

In order to be able to rescore lattices using large language mod-
els in a memory efficient manner, we implemented a new rescoring
tool, which is now part of the Kaldi toolkit. Table 4 shows theword

9http://wiki.librivox.org/index.php/NoiseCleaning
10http://wiki.librivox.org/index.php/Questionsand Answers

dev-
clean

test-
clean

dev-
other

test-
otherAcoustic model

LS

SAT 100h 8.19 9.32 29.31 31.52
SAT 460h 7.26 8.34 26.27 28.11
SAT 960h 7.08 8.04 21.14 22.65
DNN 100h 5.93 6.59 20.42 22.52
DNN 460h 5.27 5.78 17.67 19.12
DNN 960h 4.90 5.51 12.98 13.97

WSJ
SAT si-284 10.87 12.44 39.44 41.26
DNN si-284 7.80 8.49 27.39 30.01

Table 3. WERs on LibriSpeech’s test sets; all results are obtained
by rescoring with a 4-gram language model.

error rates for language models of different size. The first pass de-
coding is performed using the 3-gram model pruned with threshold
3 × 10

−7 using SRILM’s pruning method; the other numbers are
obtained through lattice rescoring.

dev-
clean

test-
clean

dev-
other

test-
otherLanguage model

3-gram prn. thresh. 3e-7 7.54 8.02 18.51 19.41
3-gram prn. thresh. 1e-7 6.57 7.21 16.72 17.66
3-gram full 5.14 5.74 13.89 14.77
4-gram full 4.90 5.51 12.98 13.97

Table 4. LM rescoring results for the 960 hour DNN model

6. CONCLUSIONS

We have automatically aligned and segmented English read speech
from audiobooks with the corresponding book text, and filtered out
segments with noisy transcripts, in order to produce a corpus of En-
glish read speech suitable for training speech recognitionsystems.
We have demonstrated that models trained with our corpus do better
on the standard Wall Street Journal (WSJ) test sets than models built
on WSJ itself – the larger size of our corpus (1000 hours, versus the
82 hours of WSJ’s si-284 data) outweighs the audio mismatch.We
are releasing this corpus online11 and have introduced scripts into
the Kaldi speech recognition toolkit so that others can easily repli-
cate these results.
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