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ABSTRACT 

In this paper, we proposed a method to realize the recently 

developed keyword-aware grammar for LVCSR-based 

keyword search using weight finite-state automata (WFSA). 

The approach creates a compact and deterministic grammar 

WFSA by inserting keyword paths to an existing n-gram 

WFSA. Tested on the evalpart1 data of the IARPA Babel 

OpenKWS13 Vietnamese and OpenKWS14 Tamil limited-

language pack tasks, the experimental results indicate the 

proposed keyword-aware framework achieves significant 

improvement, with about 50% relative actual term weighted 

value (ATWV) enhancement for both languages. 

Comparisons between the keyword-aware grammar and our 

previously proposed n-gram LM based approximation 

approach for the grammar also show that the KWS 

performances of these two realizations are complementary. 

Index Terms— keyword search, spoken term detection, 

grammar network, weighted finite-state automaton 

1. INTRODUCTION 

Spoken keyword search (KWS) [1, 2] is a task of detecting a 

set of preselected keywords in continuous speech. The 

technology has been used in various applications, such as 

spoken term detection [3-8], spoken document indexing and 

retrieval [9], speech surveillance [10], spoken message 

understanding [11, 12], etc. In general, KWS systems can be 

categorized into two groups depending on grammars
1
 used 

by the systems: (i) classic keyword-filler based KWS [1, 2], 

and (ii) large vocabulary continuous speech recognition 

(LVCSR) based KWS [3-7]. 

In the classic keyword-filler based KWS, a spoken 

utterance is represented as a sequence of keywords and non-

keywords (often referred to as fillers [1]), and the decoding 

grammar is a simple keyword-filler loop network (Fig. 1. (a)) 

[1, 2]. Because of the simplicity, a keyword-filler based 

system often achieves a high detection rate using only a 

small amount of data for acoustic model training. However 

                                                 
1 In this paper, a grammar is defined as a search graph or network whose 

paths from initial to final nodes represent valid word sequences in the 

system with corresponding scores; such a grammar can be easily realized 
by a weighted finite-state automaton (WFSA) [15]. 

the systems are restricted to the set of predefined keywords 

and often produce a great amount of false alarms which 

requires follow-up utterance verification [13-16] to decide if 

the detected keyword segments are true hits or false alarms. 

On the other hand, LVCSR-based KWS first converts 

speech utterances into word or sub-word level text 

documents using speech-to-text (STT) techniques [17-19] 

with n-gram language model (LM) [20] based grammars 

(Fig. 1. (b)) and then perform keyword search on the STT-

transcribed documents [3-7]. This allows the KWS systems 

to search any keyword without reprocessing the speech 

signal. In general, LVCSR-based KWS gives better 

detection results and much fewer false alarms than keyword-

filler based KWS [21] because more linguistic information 

is utilized in the framework. However, since a high-

performance n-gram language model typically requires a 

significant amount of text training data [22, 23], it often 

becomes a major performance bottleneck with more 

detection misses for LVCSR-based KWS in applications 

where only limited linguistic resources are available. This is 

indeed a major issue when language models can only been 

trained from a limited set of transcribed audio data. 

 
Fig. 1. Illustration of (a) keyword-filler loop grammar, (b) LVCSR LM 

grammar, and (c) the proposed keyword-aware grammar for KWS 
 

Recently, we found that by adopting a keyword-aware 

(KW-aware) grammar framework, which integrates the 

keyword-filler loop grammar into the n-gram LM grammar 

used by LVCSR-based KWS (as illustrated in Fig. 1 (c)), we 

could achieve significant performance improvement for both 

poorly-trained and well-trained n-gram LMs [24]. 

Preliminary results using context-simulated keyword 

language model (CS-KWLM) interpolated LMs [24], which 

approximate the effect of the new grammar, reveal that the 

proposed framework not only preserves the characteristics 
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of high accuracy, low false alarms, and keyword flexibility 

of LVCSR-based KWS, but also inherits the high detection 

rate from keyword-filler based KWS under resource-limited 

conditions. In this paper, we show how to implement the 

KW-aware grammar with weighted finite-state automata 

(WFSA) without any approximation. We also compare the 

WFSA-realized KW-aware grammar with the previously 

proposed CS-KWLM interpolated LM approximation to 

show the similarities and differences between the two 

realizations. 

2. KEYWORD-AWARE GRAMMAR 

When n-gram LMs are poorly trained with limited or topic-

mismatched data, LVCSR-based KWS usually suffers from 

high detection misses due to underestimated keyword prior 

probabilities. To alleviate the problem, in the KW-aware 

grammar framework, probabilities of keywords are boosted 

by inserting additional standalone keyword
2

 paths with 

appropriate scores to the n-gram LM grammars.  Thus even 

when the n-gram LMs are poorly trained the system can still 

have reasonable prior probability estimation for the target 

keywords. The conditional probability of a keyword k 

(k=w1…wL) with context history h in the KW-aware 

grammar is therefore 

         ,   |  max| hkPhkP gramnawareKW  
, (1) 

where      
L

i iigramn hwPhkP
1

|| is the probability estimated 

by regular n-gram LMs, and κ is a prior constant as the 

weight of the additional path for the query k to control the 

minimal value of PKW-aware(k|h). In real task, we may simply 

use a global prior constant, κ, for all the system keywords, 

or we can categorize the keywords into a set of classes with 

their own prior constants. The κ(s) is(are) the parameter(s) 

to be tuned in the grammar. 

Note that by default in the KW-aware grammar a 

keyword can be represented by either the n-gram LM or a 

keyword path, which makes the grammar nondeterministic 

and ineligible for offline optimization. In the next section, 

we will show how to use disambiguation symbols to solve 

the problem. 

3. REALIZATION OF THE GRAMMAR 

In this section, we first briefly introduce the WFSA 

representation of n-gram LMs [25, 26]. Then we show how 

a deterministic KW-aware grammar WFSA can be realized 

by modifying the n-gram LM WFSA. An approximation 

approach we proposed previously is also introduced. For 

WFSA formulations, annotations in [26] are adopted in this 

paper. 

3.1. Preliminary 

Definition 1. A system ( , ⨁, ⨂, 0 , 1 ) is a semiring [27] if: 

( ,⨁, 0 ) is a commutative monoid with identity element 0 ; 

                                                 
2 Note keywords in this paper refer to single- or multi-word queries. 

( ,⨂, 1 ) is a monoid with identity element 1 ; ⨂ distributes 

over ⨁; and 0  is an annihilator for ⨂: for all a∈ , a⨂ 0 =

0⨂a= 0 . 

In this paper, the log semiring ℒ=(ℝ∪{∞}), ⨁log, +, ∞, 0) 

is used [25]. Note the log semiring is an isomorphism of the 

probability semiring (ℝ+, +, ×, 0, 1) via a log morphism with, 

for all a, b ∈ ℝ∪{∞}: 

a⨁logb = –log(exp(–a) + exp(–b)) 

and we follow the convention that exp(–∞)=0 and  

–log(0)=∞. 

Definition 2 A weighted finite-state automaton A over a 

semiring   is an 7-tuple A=(Σ, Q, I, F, E, λ, ρ) where: Σ is 

the finite alphabet of the automaton; Q is a finite set of 

states; I ⊆ Q the set of initial states; F ⊆ Q the set of final 

state; E ⊆ Q×(Σ∪{∞})× ×Q a finite set of transitions; λ: I 

→   the initial weight function; and ρ: F →   the final 

weight function mapping F to  . 

Given a transition e ∈ E, we denote its label l[e], its 

origin or previous state p[e] and its destination state or next 

state n[e], its weight w[e], namely e=(p[e], l[e], w[e], n[e]). 

Given a state q ∈ Q, we denote by E[q] the set of transitions 

leaving q. 

A path π=e1…eL is an element of E
*
 with consecutive 

transitions: n[ei-1] = p[ei], i=2, …, L. We extend n and p to 

paths by setting n[π] = n[eL] and p[π] = p[e1]. The labeling 

function l and the weight function w can also be extended to 

paths by defining the label of a path as a concatenation of 

the labels of its constituent transitions, and the weight of the 

path as the ⨂-product of the weights of its constituent 

transitions: l[π]=l[e1]…l[eL], w[π]=w[e1]⨂…⨂w[eL]. The 

path π can therefore be represented by (p[π], l[π], w[π], n[π]). 

We also define states[π] and transitions[π] being the set of 

states and transitions on the path π. 

3.2. Representation of n-gram LMs with WFSAs 

In a WFSA representation of an n-gram LM over the log 

semiring, each state in the WFSA represents an n-gram 

conditioning history hi, e.g. wi-2wi-1. Each transitions leaving 

the state represent a word wi with a weight –log(P(wi|hi)) or 

a backoff transition to a lower-order conditioning history 

state [26]. A string accepted by the WFSA has a single path 

through the automaton, and the weight of the string is the 

sum of the transition weights in that path in a form of 

negative log probability. 

Given a finite set of state, Q, in an n-gram WFSA and a 

string k=w1…wL, we denote hist_of[k, Q] as the state in Q 

encoding the conditioning history that matches the end of 

the string k with the highest order. 

3.3. Realization of KW-aware grammar with WFSAs 

Suppose the set of system keywords can be categorized into 

c classes, and Ki (i=1~c) is a list of keywords in class i with 

the list size |Ki| and the constant prior κi for the class, given 
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an n-gram LM WFSA, A=(Σ, Q, I, F, E, λ, ρ), a KW-aware 

grammar WFSA, A', can be realized by the pseudo code 

presented in Fig. 2. The algorithm consists of four steps: (i) 

add disambiguation symbols to the alphabet of WFSA, (ii) 

add keyword initial states, (iii) add keyword paths, and (iv) 

normalization to make the final KW-aware WFSA 

stochastic. Note that in the KW-aware grammar WFSA we 

utilize disambiguation symbols (#k1, …, #kc) on any 

transition from states in the n-gram WFSA to the keyword 

initial states (line 7). The resulting WFSA is therefore 

deterministic and can be optimized offline. In this paper, all 

keywords are assumed in the same class, and a single 

keyword initial state and κ are used. 

Create KW-aware grammar WFSA (A, K1~c, κ1~c) 

 1    A' ← A 

 2    Σ' ← Σ∪{#k1, …,#kc}     // 1. Add disambiguation symbols 

 3    for i in 1 to c do:    

 4        qki ← (K_Initi)  

 5        Q' ← Q'∪{qki}            // 2. Add keyword initial states 

 6        for q ∈ Q do :  

 7            E' ← E' ∪{(q, #ki, –log(|Ki|⋅κi), qki)} 

 8        for k ∈ Ki do :              // 3. Add keyword paths 

 9            π ← (qki, k, log(|Ki|), hist_of[k, Q] ) 

10           Q' ← Q' ∪ states(π) 

11           E' ← E' ∪ transitions(π)            

12   for q' ∈ Q' do:                // 4.  Normalization 

13       norm ← ⨁e'∈E[q'] w[e'] 

14       for e' ∈ E[q'] do: 

15           e' ← (q',  l[e'],  w[e'] – norm,  n[e']) 

16   return A' 

Fig. 2. Pseudo code for the KW-aware grammar WFSA realization. 

3.4. Approximation of the KW-Aware grammar 

In [24], the boosting effect of Eq. (1) is approximated by 

interpolating the original n-gram LM with a keyword LM. 

The training text of the keyword LM consists of the system 

keywords prefixed and suffixed by common context terms 

derived from the original training text. This context-

simulated keyword LM (CS-KWLM) has been shown to 

provide significant performance enhancement for KWS 

systems [24]. Eq. (2) is the interpolation formula for the two 

LMs, and α is an interpolation weight needed to be tuned. 

       hwPhwPhwP LMKWLMCSLMINT |1||_    . (2) 

4. EXPERIMENTAL SETUP 

Experiments were conducted on the IARPA Babel 

OpenKWS13 (Vietnamese) [28] and OpenKWS14 (Tamil) 

[29] limited language pack (LLP) tasks
3
. In both tasks only 

10-hour transcribed audio were used for system training. 

The data are conversational speech between two parties over 

a telephone channel, which can be landline, cellphone, or 

                                                 
3  This study uses the IARPA Babel Program Vietnamese and Tamil 

language collection releases babel107b-v0.7 and IARPA-babel204b-v1.1b 
with the LimitedLP training sets. 

phones embedded in vehicles, with the sampling rate set at 

8000 Hz. For system tuning, we used the 10-hour IARPA 

development sets (denoted as dev10h) for each language. 

For both OpenKWS13 and OpenKWS14 systems, the 

15-hour evaluation part 1 data (released as evalpart1 by 

NIST) were used for testing. The evaluation keyword lists 

contain 4065 and 5576 phrases with out-of-vocabulary 

words not appearing in the training set for the two tasks 

respectively. The performance of keyword search was 

measured by the number of missing keywords and the actual 

term weighted value (ATWV) [30], which is a metric that 

takes both detection miss and false alarm errors into account. 

A system with perfect detection performance would have 

ATWV of 1. Note that the IARPA Babel program set 

ATWV=0.3 as the benchmark for KWS system performance. 

All keyword search systems were LVCSR-based with 

hybrid DNN-HMM acoustic models built with the Kaldi 

toolkit [31]. Readers can easily reproduce all baseline 

results presented in this paper by running the Babel recipe 

provided in the Kaldi toolkit. The DNNs were trained with 

sMBR sequential training [32]. The acoustic features were 

bottleneck features appended with fMLLR features, while 

the bottleneck features were built on top of a concatenation 

of PLP, fundamental frequency (F0) features, and for the 

Vietnamese systems fundamental frequency variation (FFV) 

features were used in the concatenation as well. We used a 

grapheme-to-phoneme (G2P) approach [33] to estimate the 

pronunciation for OOV words appearing in the evaluation 

keywords. The estimated pronunciations were then merged 

into the original lexicon provided by IARPA to form the 

system lexicon. 

Three KWS systems were compared. While all the 

systems shared the same acoustic model and lexicon, they 

are different in the decoding grammars. The first system 

(denoted as "n-gram baseline") is the baseline which used 

the original trigram LM. The second system is the proposed 

keyword-aware grammar based system (denoted as "KW-

aware grammar") with a global prior constant κ. And the 

third used the approximate CS-KWLM Interpolated LM as 

system grammar (denoted as "CS-KWLM Int"). All the 

system parameters α and κ are tuned with the dev10h data 

for each task. 

5. EXPERIMENTAL RESULTS AND DISCUSSION 

5.1. Comparison of grammar WFSAs 

Table I compares the Vietnamese grammar WFSAs used in 

the three systems. Carrying additional keyword information, 

both KW-aware grammar and CS-KWLM Int systems have 

larger grammar WFSAs than the baseline. However, as the 

size of the CS-KWLM based grammar WFSA being 10 

times larger than the baseline due to the great amount of 

additional keyword n-gram states, the size of the KW-aware 

grammar remained in a similar scale of the original n-gram 

WFSA. It is clear that the exact realization provides more 

compact grammar WFSA than the approximate approach. 
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Table I. Vietnamese grammar WFSAs used in the three systems 

Vietnamese grammars # arcs # states File size 

n-gram baseline 38,713 17,616 812 Kb 

KW-aware grammar   

(global κ=0.00005) 
66,913 24,215 1.3 Mb 

CS-KWLM Int (α=0.6) 381,461 165,063 7.8 Mb 

5.2. System performance 

Table II compares performance of the three systems on the 

Vietnamese evalpart1 data. The baseline system had 2,562 

missing keywords and was with ATWV of 0.2098. With the 

keyword-aware framework, both CS-KWLM and KW-

aware grammar systems significantly reduced the number of 

missed keyword by roughly 40%. The significant reduction 

of misses also reflected on the improvement of ATWV. The 

ATWV for KW-aware grammar achieved 0.3224, which is 

about a 53.7% relative improvement over the baseline. Note 

that from the averaged ATWV over the all keywords, the 

CS-KWLM system seemed to perform slightly better than 

the KW-aware grammar system. However, in the next 

section we will show that the two realizations are good at 

detecting different types of keywords. 

Table II. Performance on the Vietnamese LLP evalpart1 data. 

Vietnamese  [evalpart1] # Miss ATWV 

n-gram baseline 2562 0.2098 

KW-aware 

framework 

KW-aware grammar   

(global κ=0.00005) 
1589 0.3224 

CS-KWLM Int (α=0.6) 1651 0.3287 

 

Similar trend were found in the Tamil LLP task. In Table 

III, the baseline system had 3,663 missed keywords and 

ATWV of 0.2128. Again, the KW-aware framework 

reduced about one third of the miss in the baseline. And a 

relative 46% ATWV improvement was also observed on the 

KW-aware grammar and CS-KWLM systems. 

Table III. Performance on the Tamil LLP evalpart1 data. 

Tamil [evalpart1] # Miss ATWV 

n-gram baseline 3663 0.2128 

KW-aware 

framework 

KW-aware grammar   

(global κ=0.0000347) 
2830 0.3102 

CS-KWLM Int (α=0.3) 2689 0.3160 

5.3. ATWV analysis for keywords of different lengths 

To further study the characteristics of each system, we 

compared performances of the three systems on keywords of 

different lengths. Fig. 3 displays the ATWV curves for the 

n-gram baseline, CS-KWLM and the KW-aware grammar 

systems in the Tamil LLP task. In general, a KWS system 

has better detection performance for longer keywords 

because more acoustic context information is available for 

the system to make correct decisions. However, because of 

the misses caused by the underestimated keyword priors, the 

ATWVs of the n-gram baseline system in Fig. 3 only 

increased slowly with the increase of keyword lengths and 

dropped rapidly when keyword length L > 3. By alleviating 

the underestimation problem, both CS-KWLM and KW-

aware grammar systems significantly outperformed the 

baseline system, especially for long keywords.  

If we further compare the CS-KWLM and KW-aware 

grammar systems, it is clear that the two systems were 

different in their performance with the keyword lengths. For 

long keyword (L>2), the KW-aware grammar significantly 

outperformed the CS-KWLM system. This is because in the 

CS-KWLM approach we not only boost probabilities of 

keywords but also other word sequences with keyword n-

grams presented. The boosting effect may therefore being 

reduced relatively especially for multi-word keywords 

because more n-grams are presented in the queries. The 

standalone keyword paths in KW-aware grammar to some 

extent alleviate this problem caused by n-gram sharing in 

the n-gram LM, thus it has better performance for long 

keywords. On the other hand, the CS-KWLM system has 

slightly better performance than KW-aware grammar for L ≤ 

2 because keyword priors in the KW-aware grammar system 

were restricted to a global κ while for the CS-KWLM 

system such restriction did not exist which allowed the prior 

estimation for each keyword being closer to its ground truth. 

Since keywords with L ≤ 2 are the majority in the evaluation 

list, the overall ATWV of CS-KWLM system in Table III is 

slightly better than KW-aware grammar system. However, 

the result suggests that the two realizations are 

complementary and should be considered in different cases.  

 
Fig. 3. ATWV of keywords with different lengths for the three systems on 

evalpart1 data in the Tamil LLP task. The ATWV drops at L=5 in all the 
systems are due to miss errors caused by underestimated keyword priors. 

6. CONCLUSION 

In this paper, we proposed an exact realization, which was a 

missing block in the current KW-aware framework, of the 

KW-aware grammar. Experimental results on Babel 

Vietnamese and Tamil LLP tasks show the exact realization 

was very compact and outperformed our previous 

approximation method for long keywords; while for short 

keywords, the performances of the two systems were similar. 

We also showed that the significant performance 

improvement of the proposed KW-aware framework over 

the n-gram baseline is consistent across languages. The 

complementary performances of the two realizations for 

keywords with different lengths also suggest us that a 

combination of the two realization methods might bring 

further improvement to the LVCSR-based KWS systems. 
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