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ABSTRACT

Standard automatic speech recognition (ASR) systems use
phoneme-based pronunciation lexicon prepared by linguistic ex-
perts. When the hand crafted pronunciations fail to cover the vo-
cabulary of a new domain, a grapheme-to-phoneme (G2P) converter
is used to extract pronunciations for new words and then a phoneme-
based ASR system is trained. G2P converters are typically trained
only on the existing lexicons. In this paper, we propose a grapheme-
based ASR approach in the framework of probabilistic lexical mod-
eling that integrates pronunciation learning as a stage in ASR system
training, and exploits both acoustic and lexical resources (not neces-
sarily from the domain or language of interest). The proposed ap-
proach is evaluated on four lexical resource constrained ASR tasks
and compared with the conventional two stage approach where G2P
training is followed by ASR system development.

Index Terms— Probabilistic lexical modeling, pronunciation
lexicon, grapheme subwords, phoneme subwords, grapheme-to-
phoneme conversion.

1. INTRODUCTION

Automatic speech recognition (ASR) systems model words as a se-
quence of subword units which are further modeled as a sequence
of hidden Markov model (HMM) states. This is primarily done to
address data sparsity issues and achieve generalization towards un-
seen words. The sequence of subword units for a word is given by its
pronunciation model as specified in the pronunciation lexicon. All
the components in an ASR system presume the availability of a sub-
word unit set and a pronunciation lexicon. Therefore, in practice,
ASR system development can be seen as a two stage process: devel-
opment of pronunciation lexicon followed by ASR system training.

Typically, ASR systems use linguistically motivated phonemes
as subword units. Phoneme pronunciations are typically obtained
from a hand-built lexicon which the linguistic experts have pre-
pared. The hand crafted phoneme lexicon will provide optimum per-
formance for ASR. Most often, the existing hand labeled phoneme
lexicon (or seed lexicon) may not provide complete coverage for a
new domain (target domain) for which we are interested to build an
ASR system. A commonly adopted way to generate or augment the
phoneme pronunciation lexicon is through automatic grapheme-to-
phoneme (G2P) conversion [1, 2, 3]. The two main requirements of
automatic G2P conversion systems are: a seed lexicon and a method
to capture the G2P relationship observed in the seed lexicon. The
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G2P converter is used to augment the training vocabulary. The aug-
mented lexicon is then used to build an ASR system [4, 5, 6]. G2P
converters are also used to augment the recognition vocabulary.

Other alternatives for subword units are graphemes [7, 8, 9,
10, 11] which make the pronunciation lexicon development easy.
Graphemes are the units of written language, e.g., letters of English.
However, modeling graphemes for speech recognition is a challeng-
ing task for two reasons. Firstly, G2P relationship can be ambiguous
as languages continue to evolve after their spelling has been stan-
dardized. Secondly, typically ASR systems directly model the rela-
tionship between graphemes and acoustic features; and the acoustic
features depict the envelope of speech, which is related to phonemes.
The studies until now have shown that for languages such as English
and French that have an irregular G2P relationship, grapheme-based
ASR systems perform worse compared to phoneme-based ASR sys-
tems [8, 9, 10].

In this paper, we propose a grapheme-based ASR approach in
the framework of probabilistic lexical modeling [12, 13] where first,
acoustic-to-phoneme relationship is modeled with available acous-
tic and lexical resources (not necessarily from the domain of in-
terest), and then a probabilistic G2P relationship is learned given
the transcribed speech data of the target domain (Section 2). As
the parameters of the model capture a probabilistic G2P relation-
ship learned through acoustic data, the approach integrates pronun-
ciation learning implicitly as a phase in ASR system training. In
this paper, on four pronunciation lexicon resource constrained ASR
tasks, the proposed grapheme-based system is compared with con-
ventional approach where first, G2P conversion is performed and
then a phoneme-based system is trained (Sections 3 and 4). Fur-
thermore, the proposed grapheme-based ASR approach is evaluated
against other grapheme-based ASR approaches proposed in the lit-
erature [8, 9, 10].

2. INTEGRATED PRONUNCIATION LEARNING
In subword unit based ASR systems, HMM states represent sub-
word or lexical units, i.e., qt ∈ L = {l1, . . . li . . . lI}, where qt is the
HMM state at time t and I is the number of lexical units. Typically,
each context-independent or context-dependent subword is modeled
with three HMM states. In the framework of probabilistic lexical
modeling [12, 13], the relationship between the acoustic feature ob-
servation xt and the lexical unit li at time t is factored through a
latent variable ad as follows:

p(xt|qt = li,ΘA) =

D∑
d=1

p(xt, a
d|qt = li,ΘA) (1)

=

D∑
d=1

p(xt|ad, θa)︸ ︷︷ ︸
acoustic model

·P (ad|qt = li, θl)︸ ︷︷ ︸
lexical model

(2)
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We refer to the latent variable ad as the acoustic unit and the set of
acoustic units A = {a1, . . . ad, . . . aD} where D is the total num-
ber of acoustic units. The relationship in Eqn (2) is as a result of
the assumption that given ad, p(xt|ad, qt = li, θa, θl) is indepen-
dent of li. In Eqn (2), p(xt|ad, θa) is the acoustic unit likelihood
and P (ad|li, θl) is the probability of the latent variable given the
lexical unit. We refer to p(xt|ad, θa) as the acoustic model and
P (ad|li, θl) as the lexical model. The parameters of the acoustic
likelihood estimator ΘA encompass the acoustic model (θa), the
pronunciation lexicon (θpr) and the lexical model (θl) parameters,
therefore, ΘA = {θa, θpr, θl}.

In the literature, there are two main approaches for acoustic
modeling, namely, Gaussian mixture models (GMMs) and artifi-
cial neural networks (ANNs). In [13], we have shown that in
standard HMM-based ASR approaches like HMM/GMM and hy-
brid HMM/ANN, the relationship between lexical units and acous-
tic units is one-to-one and the lexical model is deterministic. Fur-
thermore, it was shown that in Kullback-Leibler divergence based
hidden Markov model (KL-HMM) [14] and tied posterior [15] ap-
proaches, the relationship between lexical and acoustic units is prob-
abilistic (probabilistic lexical modeling).

2.1. Grapheme-based ASR Approach
In the framework of probabilistic lexical modeling, the modeling of
the relationship between graphemes and acoustic features can be fac-
tored into two parts through acoustic units:

1. The acoustic model where the relationship between acoustic
units and acoustic features is modeled.

2. The lexical model where a probabilistic relationship between
acoustic units and graphemes is modeled.

In this paper, we use the KL-HMM approach for probabilistic lexical
modeling. The KL-HMM approach assumes that an acoustic unit set
A is defined and a trained acoustic model is available. Therefore,
in the first step a standard HMM-based ASR system i.e., either an
HMM/GMM system or a hybrid HMM/ANN system is trained. The
acoustic model (GMMs in the case of HMM/GMM or ANN in the
case of hybrid HMM/ANN) is used with the pronunciation lexicon
and acoustic data to train the parameters of the lexical model.

In the KL-HMM approach, the parameters of the lexical model
are learned through acoustic unit posterior probability estimates.
Given the acoustic model, acoustic unit probability sequences of
training data are estimated. The acoustic unit probability sequences
are used as feature observations to train an HMM with graphemes
as lexical units using the KL-HMM approach. In the KL-HMM ap-
proach, HMM states are parameterized by categorical distributions
and model a probabilistic relationship between a lexical unit and D
acoustic units.

In the proposed approach with graphemes as lexical units and
phonemes as acoustic units, the lexical model parameters capture a
probabilistic relationship between graphemes and phonemes. Fur-
thermore, the probabilistic G2P relationship is learned on acoustic
data. Thus, the proposed grapheme-based ASR approach integrates
lexicon learning as a phase in ASR system training and could po-
tentially remove the necessity of training an explicit G2P converter.
In [11]1, where the acoustic units were phonemes it was elucidated
that the lexical model parameters in the proposed grapheme-based
ASR approach indeed capture a probabilistic G2P relationship.

1It is important to note that in [11] the notion of probabilistic lexical mod-
eling was not introduced.

2.2. Contributions of the Present Paper
Motivated by the analysis of the lexical model parameters and the
probabilistic G2P relationship captured by them [11], in this paper
we hypothesize that with probabilistic lexical modeling it is possible
to build an ASR system that uses a grapheme lexicon and achieves
performance as good as ASR systems, where first G2P conversion
is performed to build a lexicon and then a phoneme-based ASR
system is trained. To validate our hypothesis, we investigate the
grapheme-based ASR approach in the following two lexical resource
constrained scenarios that are commonly encountered.

In the first case, the target domain for which we are interested to
build an ASR system has only word level transcribed speech (acous-
tic) data. Cross-domain acoustic and lexical resources are available,
but they do not provide complete coverage on the target domain data.
In the proposed grapheme-based ASR approach, first an acoustic
model with phonemes as acoustic units and then a lexical model
with graphemes as lexical units are trained. In the framework of
probabilistic lexical modeling, the parameters of the acoustic model
θa and the parameters of the lexical model θl can be trained on an
independent set of resources [13]. Therefore, it is possible to build
an ASR system where the acoustic model is trained on cross-domain
acoustic and lexical resources; and the lexical model is learned on
target domain data.

In the second case, there is a need to expand the recognition vo-
cabulary. In this case, a grapheme-based ASR system can be trained
where the acoustic unit set is based on phonemes and the acous-
tic model is trained on acoustic and lexical resources of target do-
main data. The lexical unit set is based on graphemes and the lexical
model is also learned on target domain data. Since the lexical units
are graphemes, the recognition vocabulary can be augmented easily.

Figure 1 illustrates block diagram of the conventional phoneme-
based ASR system using phoneme lexicon from a G2P converter and
Figure 2 illustrates the proposed grapheme-based ASR system.
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3. EXPERIMENTAL SETUP
The present paper investigates the hypothesis that the proposed
grapheme-based ASR approach achieves performance as good as
phoneme-based ASR systems using a phoneme lexicon from a
G2P converter. Furthermore, the proposed grapheme-based ASR
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approach incorporating a probabilistic lexical model is compared
with grapheme-based HMM/GMM [8, 9] and grapheme-based Tan-
dem [10] approaches that use a deterministic lexical model. Towards
these goals, we present four different ASR studies using the follow-
ing three lexica:

1. GRAPH - grapheme lexicon transcribed using the orthogra-
phy of words.

2. G2P - phoneme lexicon obtained using a joint n-gram based
G2P converter [2]. We used the sequitur G2P toolkit.

3. PHONE - well developed phoneme lexicon designed for each
ASR task. This lexicon serves as an optimistic case as it is
manually built and verified.

Following the previous work [12, 13], we use the KL-HMM ap-
proach for probabilistic lexical modeling. In this paper, we compare
the KL-HMM, HMM/GMM and Tandem systems. All the systems
model crossword context-dependent subword units (lexical units). In
the KL-HMM systems acoustic units are context-independent sub-
word units, and lexical and acoustic units are probabilistically re-
lated. In the HMM/GMM and Tandem systems, acoustic units are
clustered context-dependent subword units, and lexical and acoustic
units are deterministically related. The capabilities of various sys-
tems are summarized in Table 1.
Table 1. Overview of different systems. CI denotes context-
independent subword units, CD denotes context-dependent subword
units and cCD denotes clustered context-dependent subword units.
P and G denote the phoneme and grapheme lexicon, respectively.
Det denotes the lexical model is deterministic and Prob denotes the
lexical model is probabilistic.

System Acoustic Lexicon Lexical Approachunits A units L
KL-HMM CI P or G CD Prob
Tandem cCD P or G CD Det

HMM/GMM cCD P or G CD Det

We use multilayer perceptrons (MLPs) trained to classify
context-independent phonemes as the acoustic models for the KL-
HMM systems. Input to all the MLPs is the 39-dimensional PLP
cepstral coefficient vector with a nine-frame context. The KL-HMM
systems used the symmetric KL-divergence as the local score [11].
The Tandem features were extracted by transforming the output of
the MLPs (same MLPs used in the KL-HMM systems) with log
transformation followed by Karhunen-Loeve transform (KLT). The
39-dimensional PLP feature vector used to train the MLP are also
used to train the HMM/GMM systems.

The KL-HMM and Tandem systems are capable of exploiting
cross-domain acoustic and lexical resources (if available) by us-
ing an MLP trained on cross-domain resources. The lexical model
of KL-HMM systems is always trained on target-domain resources
whereas both acoustic and lexical models of Tandem systems are
trained on target-domain resources. The HMM/GMM system is
trained on target-domain data alone. In this paper, we do not perform
acoustic model adaptation of HMM/GMM systems on cross-domain
resources, as it is assumed that the tasks lack only lexical resources.

In the following subsections we will describe the four investi-
gated ASR studies that reflect practical scenarios. The first three
studies are on English whereas the fourth study is on French. The
G2P relationship is irregular in both English and French.

3.1. Cross-Domain ASR Study
The goal is to build an ASR system for a new domain without a
phoneme pronunciation lexicon. Cross domain acoustic and lexical

resources are available, however, the cross domain lexicon has a high
out-of-vocabulary rate on the new domain. In that regard, we present
an experimental study where the RM corpus [16] is considered as the
target domain and the WSJ1 [17] corpus as the cross-domain. The
standard RM setup with 3990 train utterances and 1200 test utter-
ances is used in this study2. Though RM and WSJ are similar do-
mains, among the 1000 words present in the RM task, the WSJ task
includes only 568 words. That is, the RM task has 432 words that are
not seen in the WSJ pronunciation lexicon. We use an off-the-shelf
three-layer MLP [14] trained on the WSJ1 (to classify 45 context-
independent phonemes) for the KL-HMM and Tandem systems.

The G2P converter trained on WSJ1 lexicon is used to estimate
pronunciations for the RM words. The optimal n-gram context size
was 5. The performance of the G2P lexicon compared to the PHONE
lexicon given in the RM task was 92.2% phoneme accuracy.

3.2. Multi Accent Non-Native ASR Study
The goal is to build an ASR system for non-native speech includ-
ing multiple accents without a phoneme pronunciation lexicon. In
this study, cross-domain acoustic and lexical resources are from na-
tive language speakers. The spoken words in non-native speech are
pronounced differently from native pronunciations. Capturing these
variations through multiple pronunciations is not a trivial task [19].
Therefore, the approaches should implicitly handle lexical resource
constraints and model the pronunciation variability.

We study multi-accent non-native speech recognition using the
HIWIRE corpus [20]2. As cross-domain resources we use the
SpeechDat(II) British English corpus that includes acoustic and lex-
ical resources from native language speakers.

A three-layer MLP [18] trained on the SpeechDat(II) British En-
glish corpus to classify 45 context-independent phonemes was used
for the KL-HMM and Tandem systems. SpeechDat(II) is a tele-
phone speech corpus, hence, the HIWIRE speech was down sampled
to 8kHZ before extracting PLP cepstral features and then forward
passed through the SpeechDat(II) English MLP.

The G2P converter trained on SpeechDat(II) British English lex-
icon is used to estimate pronunciations for the HIWIRE words. The
optimal width of the graphone context was found to be 6. The per-
formance of the G2P lexicon compared to the PHONE lexicon of the
HIWIRE task was 89.4% phoneme accuracy.

3.3. Lexicon Augmentation Study
In this study our goal is to augment the test vocabulary with new
words that are not present in the training vocabulary. The training
data includes limited word level transcribed speech data with the
phoneme pronunciations of words seen in the training data. The
study is performed on the PhoneBook speaker-independent task-
independent 600 word isolated word recognition corpus where none
of the words in the test vocabulary are present in the training vocab-
ulary [21].

The MLP for the KL-HMM and Tandem systems was trained on
limited training data of the PhoneBook corpus to classify 42 context-
independent phonemes. For MLP training, we followed the same
setup as in [22], where 19421 utterances are used for training and
7920 utterances for cross validation. Thus, the data used to train the
MLP did not contain any of the test words.

Systems are built using both training and cross validation
utterances consisting of 27341 utterances covering 2183 words.
Phoneme-based KL-HMM systems used the phoneme lexicon

2In the previous work on RM [11] and HIWIRE [18] corpora the per-
formance of systems using word-internal context-dependent subwords was
reported.
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given in the PhoneBook corpus with acoustic units as context-
independent phonemes and lexical units as context-dependent
phonemes. Grapheme-based KL-HMM systems are trained with
acoustic units as context-independent phonemes and lexical units as
context-dependent graphemes. In the case of the PhoneBook task
word-internal context-dependent systems are built (as it is an iso-
lated word recognition task).

The G2P lexicon for the test set was built by training a G2P
converter on the training and cross-validation pronunciation lexicon
(consisting of pronunciations for 2183 words). The performance
of the G2P lexicon compared to the PHONE lexicon given in the
PhoneBook task was 89.2% phoneme accuracy.

3.4. LVCSR Study
Finally, we study the proposed approach on a large vocabulary
continuous speech recognition (LVCSR) task involving non-native
speakers during recognition. Furthermore, the recognition vocabu-
lary includes words that are not seen during training. To study such a
scenario we use Mediaparl French corpus [23]. MediaParl is a bilin-
gual corpus containing recordings of debates in Valais parliament in
Switzerland in both Swiss German and Swiss French. We use only
the French part of the MediaParl corpus and the experimental setup is
similar to [23]. All the speakers in the training and development set
are native speakers. In the test set, four speakers are German native
speakers and for three speakers, French is the native language. The
train vocabulary includes 12196 words and test vocabulary includes
4246 words out of which 915 words are not seen during training.
We use 5-layer MLP reported in [24] trained to classify 38 context-
independent phonemes for all the KL-HMM and Tandem systems.
The G2P lexicon for the test vocabulary was built by training a G2P
converter on the training and cross-validation pronunciation lexicon.
The performance of the G2P lexicon for the test vocabulary com-
pared to the PHONE lexicon given in the MediaParl French task was
97.4% phoneme accuracy.

4. RESULTS
The performance in terms of word accuracy of the various systems
using three different lexica on the RM, HIWIRE, PhoneBook and
MediaParl tasks is given in Tables 2, 3, 4, and 5 respectively. In the
tables, boldface indicates the best system for each lexicon. The main
observations from the four tasks are as follows:

• On the HIWIRE and PhoneBook tasks, the KL-HMM sys-
tems using the GRAPH lexicon perform better than the KL-
HMM systems using the G2P lexicon whereas on the RM and
MediaParl tasks, the KL-HMM systems using the GRAPH
lexicon perform similar to the KL-HMM systems using the
G2P lexicon. Furthermore, in the case of the RM and HI-
WIRE tasks, the KL-HMM systems using the GRAPH lex-
icon achieve performance comparable to the KL-HMM sys-
tems using the optimistic well developed PHONE lexicon.

• The performance of the KL-HMM systems using the GRAPH
and G2P lexica is always better than that of the HMM/GMM
systems. The performance of the KL-HMM system using
the PHONE lexicon is similar to or better than that of the
HMM/GMM system.

• The results show that on all the four tasks, the HMM/GMM
systems using the PHONE lexicon perform better than the
HMM/GMM systems using the GRAPH or G2P lexicon.
The results also show that on the RM and HIWIRE tasks,
HMM/GMM systems using the GRAPH lexicon and the G2P
lexicon perform similarly. However, on the PhoneBook task
where the recognition vocabulary is entirely different from

the train vocabulary, the system using the GRAPH lexicon
performs significantly better than the system using the G2P
lexicon. On the MediaParl task with a large vocabulary, the
system using the GRAPH lexicon performs worse than the
system using the G2P lexicon.

• The performance of the Tandem systems is worse (for all the
three lexica) than the KL-HMM systems. The performance
of the Tandem systems is similar to or worse than that of the
HMM/GMM systems.

The results confirm our two hypotheses. Firstly, the proposed
grapheme-based system can perform better than or comparably to
the phoneme-based system using the phoneme lexicon from a G2P
converter. Secondly, the ASR systems incorporating a probabilis-
tic lexical model, handle the pronunciation errors inherent in the
GRAPH and G2P lexica better than the standard ASR systems in-
corporating a deterministic lexical model.

Table 2. Word accuracies (in %) on the test set of the RM corpus.
System GRAPH G2P PHONE
KL-HMM 95.5 95.6 95.9
Tandem 94.5 94.6 95.4
HMM/GMM 94.8 95.1 95.9

Table 3. Word accuracies (in %) on test set of the HIWIRE corpus.
System GRAPH G2P PHONE
KL-HMM 97.5 96.8 97.3
Tandem 96.6 96.2 97.0
HMM/GMM 96.4 96.1 97.2

Table 4. Word accuracies (in %) on test set of PhoneBook corpus.
System GRAPH G2P PHONE
KL-HMM 93.6 89.1 97.8
Tandem 92.7 84.9 97.4
HMM/GMM 91.0 86.7 97.0

Table 5. Word accuracies (in %) on test set of MediaParl corpus.
System GRAPH G2P PHONE
KL-HMM 71.7 71.9 74.1
Tandem 65.3 64.1 66.1
HMM/GMM 68.4 70.7 73.2

5. DISCUSSION AND CONCLUSIONS

In this paper, we proposed a grapheme-based ASR approach where
first acoustic-to-phoneme relationship is learned on acoustic and
lexical resources and then a probabilistic grapheme-to-phoneme
is learned on word level transcribed speech data from the target
language or domain. The studies on four lexical resource con-
strained ASR tasks have shown that the proposed grapheme-based
ASR approach which implicitly integrates lexicon learning per-
forms better than or comparably to the conventional two stage ap-
proach where G2P training is followed by ASR system development.
Standard G2P converters rely on language-dependent lexical re-
sources to learn the relationship between graphemes and phonemes.
The proposed grapheme-based ASR approach can exploit domain-
independent (as shown in this paper) or language-independent [13]
acoustic and lexical resources. The studies in this paper and the
previous work [13] show that the proposed approach could poten-
tially prevent the need for an explicit G2P convertor. In this paper,
we focused mainly on the lexical model of the proposed system. In
our future work we intend to bridge the gap between the proposed
grapheme-based ASR system and the system using well developed
phoneme lexicon by improving the acoustic model using deep ANN
architectures and/or by using clustered context-dependent subword
units as acoustic units.
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[9] M. Killer, S. Stüker, and T. Schultz, “Grapheme based Speech
Recognition,” in Proc. of EUROSPEECH, 2003.

[10] J. Dines and M. Magimai-Doss, “A Study of Phoneme and
Grapheme based Context-Dependent ASR Systems,” in Proc.
of Machine Learning for Multimodal Interaction (MLMI),
2007, pp. 215–226.

[11] M. Magimai.-Doss, R. Rasipuram, G. Aradilla, and
H. Bourlard, “Grapheme-based Automatic Speech Recog-
nition using KL-HMM,” in Proc. of Interspeech, 2011, pp.
445–448.

[12] R. Rasipuram and M. Magimai.-Doss, “Probabilistic Lex-
ical Modeling and Grapheme-based Automatic Speech
Recognition,” http://publications.idiap.
ch/downloads/reports/2013/Rasipuram_
Idiap-RR-15-2013.pdf, 2013, Idiap Research Re-
port.

[13] R. Rasipuram and M. Magimai.-Doss, “Acoustic and Lexical
Resource Constrained ASR using Language-Independent
Acoustic Model and Language-Dependent Probabilistic
Lexical Model,” http://publications.idiap.
ch/downloads/reports/2014/Rasipuram_
Idiap-RR-02-2014.pdf, 2014, Idiap Research Re-
port.

[14] G. Aradilla, H. Bourlard, and M. Magimai Doss, “Using KL-
Based Acoustic Models in a Large Vocabulary Recognition
Task ,” in Proc. of Interspeech, 2008, pp. 928–931.

[15] J. Rottland and G. Rigoll, “Tied Posteriors: An Approach
for Effective Introduction of Context Dependency in Hybrid
NN/HMM LVCSR,” in Proc. of ICASSP, 2000, pp. 1241–
1244.

[16] P. J. Price, W. Fisher, and J. Bernstein, “The DARPA 1000-
word resource management database for continuous speech
recognition,” in Proc. of ICASSP, 1988, pp. 651–654.

[17] P. C. Woodland, J. J. Odell, V. Valtchev, and S. J. Young,
“Large Vocabulary Continuous Speech Recognition using
HTK,” in Proc. of ICASSP, 1994, vol. 2, pp. 125–128.

[18] D. Imseng, R. Rasipuram, and M. Magimai.-Doss, “Fast and
Flexible Kullback-Leibler Divergence based Acoustic Model-
ing for Non-native Speech Recognition,” in Proc. of Auto-
matic Speech Recognition and Understanding (ASRU), 2011,
pp. 348–353.

[19] H. Strik and C. Cucchiarini, “Modeling pronunciation varia-
tion for ASR: A survey of the literature,” Speech Communica-
tion, vol. 29, pp. 225–246, 1999.

[20] J.C. Segura, T. Ehrette, A. Potamianos, D. Fohr, I. Illina, P-A.
Breton, V. Clot, R. Gemello, M. Matassoni, and P. Mara-
gos, “The HIWIRE Database, a Noisy and Non-native
English Speech Corpus for Cockpit Communication,” http:
//cvsp.cs.ntua.gr/projects/pub/HIWIRE/
WebHome/HIWIRE_db_description_paper.pdf,
2007.

[21] J. Pitrelli, C. Fong, S.H. Wong, J.R. Spitz, and H.C. Leung,
“PhoneBook: a phonetically-rich isolated-word telephone-
speech database,” in Proc. of ICASSP, 1995, vol. 1, pp. 101–
104.

[22] S. Dupont, H. Bourlard, O. Deroo, V. Fontaine, and J. M. Boite,
“Hybrid HMM/ANN Systems for Training Independent Tasks:
Experiments on ’Phonebook’ and Related Improvements,” in
Proc. of ICASSP, 1997.

[23] D. Imseng, H. Bourlard, H. Caesar, P.N. Garner, G. Lecorvé,
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