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ABSTRACT
The recognition of contact names in mobile-device voice commands
is a challenging problem. Some of the difficulties include poten-
tially infinite vocabularies, low probability of contact tokens in the
language model (LM), increased false triggering of contact voice
commands when none are spoken, and very large and noisy contact
name lists. In this paper we suggest solutions for each of these diffi-
culties.

We address low prior probability and out-of-vocabulary contact
name problems by using class-based language models, and creat-
ing on-the-fly user dependent small language models containing only
relevant names. These models are compiled dynamically based on
analysis of the mobile device state. Since these solutions can in-
crease biasing towards contact names during recognition, it is crucial
to monitor false triggering. To properly balance this bias we intro-
duce the concept of a contacts insertion reward. This reward is tuned
using both positive and negative test sets.

We show significant recognition performance improvements on
data sets in three languages, without negatively impacting the overall
system performance. The improvements are obtained in both offline
evaluations as well as on live traffic experiments.
Index Terms: speech recognition, voice commands, contact names,
FSTs

1. INTRODUCTION

Voice input has become a critical component of modern mobile
smart phones. Over time, its usage has expanded from search by
voice to free-form semantic voice commands. Typical examples in-
clude phrases such as “call Mike at work” or “send SMS to Frank
with the topic arriving late”.

These types of voice commands are relatively hard to recognize
for several reasons. First, the set of unique names in most languages
is very large. Including a large number of names in the language
model could result in significant increase of lexicon and language
model sizes, negatively affecting the ability to process voice com-
mands accurately and with low latency. Secondly, including names
not relevant to a particular user can hurt the recognition performance
by causing false triggering of voice commands.

In this paper we present solutions to address these problems
based on the ideas of class based language models introduced in
[1, 2]. In particular, we create on-the-fly user dependent small lan-
guage models containing only names relevant to a particular user.
These are compiled dynamically based on analysis of the mobile de-
vice state. By performing G (language model) level replacement, we
solve a major issue of preserving the right phonetic context of the
word preceding a class-specific model and the left phonectic context
of the word following a class-specific model as described in more
detail in section 3. We also address a very important issue of han-
dling out-of-vocabulary (OOV) words in the class-specific language

models. In the case of user contacts, it is extremely likely that a
large number of contact names will not be part of our main vocabu-
lary. We solve this problem by adding context-independent phones
to our main vocabulary as described in more detail in section 3.3.

Since these solutions can increase biasing towards contact
names during recognition, it is crucial to monitor false triggering
of voice commands. We address this issue by introducing the con-
cept of a contacts insertion reward. As for contacts we do not have
enough prior information to build a proper model, we investigate
three approaches for setting contacts insertion reward and chose the
optimal approach in which the reward can be adjusted on a per-user
basis depending on the number of user contacts. This reward is tuned
using both positive and negative test sets (see details in section 2.1).

We organize the paper as follows. In section 2, we present how
language modeling training is modified to handle name classes, and
our finite-state transducer (FST) replacement approach. In section 3,
we explain how decoder graph construction has to be modified to
efficiently handle dynamic lists of names. In section 4, we describe
our strategy to identify the contact names that are relevant to a par-
ticular user. Finally, in section 5, we present all our experimental
results.

2. LANGUAGE MODELING

The benefit of a class-based n-gram language modeling approach
[1] is that it provides a user-independent modeling of the probability
of a contact name in a given n-gram context, while making it easy
to dynamically update our LM with a user-dependent contact name
model. Our approach is closely related to the ones used in [2, 3].

In such a method, we will replace in our training corpora all
contact name phrases by a special token $CONTACTS and train
an LM like we usually do (section 2.3). At recognition-time, we
will build a user-specific contact model based on user metadata (sec-
tion 2.1). The finite-state replacement mechanism allows us to on-
demand substitute visited instances of the class token $CONTACTS
with the user-specific contact model (section 2.2).

2.1. Class-specific models

In a class-based approach, for a given class c we need to build a
c-specific model that estimates the probability of a phrase w given c:

Pr(w | c). (1)
For contacts, we do not have enough prior information to build a
proper model. For a given user, we only have access to a set Pc
of contacts phrases. For a phrase w ∈ Pc, we investigated three
approaches for setting the conditional probability of w given c:

1. No modeling: Pr(w | c) = 1.
2. Uniform modeling: Pr(w | c) = 1

|Pc| .

3. Scaled uniform modeling: Pr(w | c) = e−α

|Pc|1−β
.
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While in some cases these approaches may lead to an LM that
is no longer properly normalized, we will show that the weights of
the search graph can be redistributed so that Viterbi search is not
affected.

Approach 1 results in assigning the full class probability in the
main language model (h) to every class phrase: Pr(w | h) =
Pr(c | h). When expressing the LM probabilities as costs (defined in
negative-log domain), this can be viewed as applying a class “inser-
tion reward” of − log|Pc| . The resulting model is not properly nor-
malized and the potential large reward interacts very negatively with
the Viterbi beam search performed during decoding, unless weight
pushing is applied on the decoder graph as described in more detail
below.

Approach 2 is the only approach that results in a properly nor-
malized model. However, it does not match well the reality of the
task. Users tend to call only a small subset of their contacts, and the
larger their contacts list the smaller will be the probability assigned
to the contacts they are likely to call. This is made worse by the fact
that our users’ contacts lists are often extremely large. As a result,
the cost assigned by the LM to a contact calling phrase will be too
high and such hypotheses will be pruned away during decoding.

Approach 3 results in a class “insertion reward” of α−β log|Pc|
compared to Approach 2. This allows us to specify a base reward
that can be adjusted on a per-user basis depending on the number
of user contacts. For instance, with α = 0 and β = 0.5, for a
user with 10, 000 contacts, each contact will be assigned probabil-
ity 1

100
(instead of 1

10000
with Approach 2) whereas for a user with

100 contacts, each one will have probability 1
10

(instead of 1
100

with
Approach 2).

This approach generalizes the previous ones: Approach 1 corre-
sponds to set α = 0 and β = 1 and Approach 2 to α = β = 0. It
allows us to find a balance between the two previous approaches as
we will see in Section 5.2.

We build the negative log-domain finite-state automatonGc rep-
resenting our class specific model as follows. We build a minimal de-
terministic unweighted automaton representing the set of phrases Pc.
We use the weight pushing algorithm [4] to redistribute the weights
along the path while preserving full-path weights in such a way that
at every non-initial state, the ⊕log-sum of the weights of all outgo-
ing transitions is 0 (1 in the probability domain). This property is
important to ensure a well behaved beam search. The ⊕log-sum1 of
the outgoing arcs at the initial state is then− log|Pc|. Hence, we can
apply Approach 3 by adding α − (β − 1) log|Pc| to the weight of
every outgoing transition out of the initial state.

2.2. Class-based Language Models and Replacement

In our class-based approach, we have a top-level language model
G$ROOT represented by an FST where arcs can be labeled by regular
words or class tokens such as $CONTACTS. For a given utterance,
we need to obtain an FST representation of our class-based LM by
replacing each transition labeled by a class token by the correspond-
ing utterance-specific FST modeling that class. This can be done
using the finite-state replacement operation. The benefit of this ap-
proach is that this operation can be performed on-demand for each
utterance. This leads to memory saving since G$ROOT can be shared
among threads2. Moreover only the part of replacement that is vis-
ited during recognition will be computed leading to low CPU over-
head and to further memory saving.

1The ⊕log operation is defined as a⊕log b = − log(e−a + e−b).
2Our FST decoder is multithreaded.
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Fig. 1. Replacement algorithm.

The finite-state replacement operation is specified by a triple
R = (N,S, (Tν)ν∈N ) where N is a set of nonterminals, S is the
root nonterminal and (Tν)ν∈N is a family of FSTs. AssumingR has
an acyclic dependency graph3, the replacement ofR is the finite-state
transducer T = Replace(R) defined as follows. Let Q = ∪ν∈NQν
where Qν is the set of states of Tν . States in T are of the form
(q, s) ∈ Q × Q∗4. A state (q, ε) is initial (resp. final) in T iff q
is initial (resp. final) in TS . Transitions in T out a state (q, s) with
q ∈ Qν are defined as follows. Given a transition in Tν from q to r
with input label a, output label b and weight w, we create
• if b is a terminal: a transition from (q, s) to (r, s) with input

label a, output label b and weight w, or

• if b is a non terminal: transitions from (q, s) to (ib, sr) with
input label a, output label ε and weight w and from (fb, sr)
to (r, s) with ε input and output labels and 0 weight, where ib
and fb are the initial and final states of Tb, and sr is ordered
concatenation of states s and r.

An implementation of the on-demand replacement operation is
available in the OpenFst library [5]. Figure 1 shows the FST
obtained by applying the replacement operation to the triple
({$ROOT, $CONTACTS} , $ROOT, (Gν)ν∈{$ROOT,$CONTACTS}).

2.3. Language Model Training

The top-level G$ROOT language model was trained as follows. We
first collected a training set of in-domain sentences that included
contact related voice commands. For that purpose, we used unsu-
pervised in-domain sentences. Specifically, we filtered anonymized
voice search queries for those utterances that included contact names
and that would, after being parsed by a semantic parser, trigger a
contact voice command event such as contact calling, sending email
or sms. We further anonymized the matched training phrases by re-
placing the contact name with the class label $CONTACTS.

We used the Bayesian interpolation method of [6] to combine
the voice command models with LMs trained on our other train-
ing sources. These include typed data sources (such as web search
queries) and spoken data sources consisting of ASR results from
anonymized utterances filtered by recognition confidence score [7].

3. RECOGNITION TRANSDUCER CONSTRUCTION

Given a language model G (an automaton over words), a phonetic
lexicon L (a transducer mapping context-independent phones to

3The dependency graph of R is the directed graph (N,E) where there is
an edge (µ, ν) ∈ E iff there is a ν-labeled transition in Tµ.

4Kleene star operator.
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words) and a context-dependency specificationC (a transducer map-
ping context-dependent to context-independent phones), we need to
construct a recognition transducer T that maps context-dependent
phones to words.

When using non-class-based static language models, we follow
the construction algorithm from [8]. We first statically build an opti-
mized context-dependent lexicon CL by composing C with a deter-
minized L:

CL = C ◦Det(L). (2)
Finally, we use the composition algorithm with reachability filters
from [8, 9] to build:

T = CL ◦G. (3)
This second composition can be performed statically or on-
demand. When using the on-demand approach, the overhead of the
recognition-time computation can be further reduced by using the
pre-initialization algorithm from [10].

3.1. CLG-level Replacement

Given a class-based language model specification (Gc)c∈N , we
build an individual recognition transducer Tc for each class la-
bel/nonterminal c:

Tc = CL ◦Gc (4)
and then define the recognition transducer:

T = Replace((Tc)c∈N ). (5)
A major issue with this approach is that the left and right pho-

netic contexts of a phrase in c are always the start and end phone (si-
lence). The right phonetic context of the word preceding that phrase
as well as the left phonetic context of the word following that phrase
will also be incorrect.

3.2. G-level Replacement

An alternative approach is to leverage the fact that the composition
algorithm with reachability filters [8] can be applied on-demand to a
dynamic language model:

T = CL ◦ Replace((Gc)c∈N ). (6)
One issue with this approach is that having to perform both com-

position and replacement on demand in this manner significantly in-
creases the run-time overhead. However, the pre-initialization algo-
rithm [10] provides a solution to this problem.

States in T are of the form (p, (q, s)) where p is a state in CL
and (q, s) a state in Replace((Gc)c∈N ). A state of the form (q, ε)
corresponds to a state in the main language model and hence does
not change between utterances. This means we can apply the pre-
initialization algorithm [10] as long as we restrict it to only pre-
initialize states of the form (p, (q, ε)). This allows us to benefit fully
from the pre-initialization while keeping the ability to update the
class-specific models on a per-utterance basis.

3.3. Handling Out-of-Vocabulary Words

One final issue is how to handle OOV words in the class-specific
models. In the case of user contacts, it is extremely likely that for
a large population of users, a large proportion of the contact names
will not be part of our main vocabulary.

Since CL is built and optimized offline, it is difficult to add
new names to it while keeping the result optimized and updating
the reachability filter data accordingly. Instead, we choose to use a
form of LG-level replacement for the classes susceptible to contain
OOVs.

We modify our main L by adding a single-phone monophone
word for every context-independent phone. We then create an FST
M that maps each monophone word to the corresponding (context-
independent) phone as in [3].

For the contacts class c or any class for which we want to allow
OOVs, we build a c-specific restricted lexiconLc containing pronun-
ciations for the words in Gc and we build a new replace component
for c as:

G′c =M ◦Det(Lc) ◦Gc. (7)
Given C′ ⊆ C, the set of classes for which we want to allow OOVs,
we build the recognition transducer as:

T = CL ◦ Replace((Gr, Gc, G
′
c′)c∈C\C′,c′∈C′) (8)

where r denotes the root nonterminal.
This solves the OOV problem since (7) can be computed on a

per-utterance basis just before recognition by the module gathering
the user contact names using a grapheme-to-phoneme model.

4. CONTACT SELECTION BIASING

Although typical users have a very large number of contacts in their
address books, they usually interact with only a small number of
them on a regular basis. The frequency depends on the particular
application they use (email, call, SMS, etc.). Using a large num-
ber of contacts to build a contacts class based language model can
adversely affect recognition performance on contact related voice
commands. Furthermore, it increases the risk of false triggering of
voice commands. To reduce this risk while maintaining high recog-
nition accuracy, affinity signals can be used to produce a ranked list
of contacts per mode of interaction. This list can then be used to
modify contact calling phrase LM costs accordingly.

For a call-contact voice command, we use relevant signals such
as how many times the user has called a specific person (frequency
affinity), and the time that has passed since the last call was made
(recency affinity). Contact affinity is calculated as the sum of the
frequency and recency affinities. Frequency affinity is normalized by
the total number of calls. Recency affinity is an exponential decaying
function of the time passed since the last call. The contact selection
process that we use is adaptive and is executed on the user’s device
every time the user makes a query, which achieves maximum fresh-
ness of the ranked list, and captures events such as recently added or
deleted contacts.

5. EXPERIMENTAL RESULTS

We conducted a large number of experiments by testing each of the
improvements that we have made using offline and live testing ap-
proaches.

5.1. Corpora

For American English, we collected a data set of 10,670 contact call-
ing voice command utterances. In addition, we collected an “anti-
contact” data set consisting of 4,962 utterances. This set includes
queries that are not contact calling voice commands but could po-
tentially be recognized as such. It consists of business calling voice
commands, or general voice queries (e.g. “call McDonald’s”, “call
of duty”). We used this data set to evaluate overtriggering. Simi-
larly, we collected contact and anti-contact data sets for two addi-
tional languages. This collected data was obtained from users who
voluntarily opted-in into personalized speech recognition. All of the
data sets were manually transcribed.
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Language Test Set NUtts CLG
WER[%]

G
WER[%]

German CONTACTS 2,928 16.3 12.3
CONTACTS-W-SEL 2,928 10.2 9.6
ANTI-CONTACTS 2,937 33.3 26.0

British CONTACTS 2,588 22.4 21.2
English CONTACTS-W-SEL 2,588 20.5 16.8

ANTI-CONTACTS 2,740 47.0 31.7
American CONTACTS 10,670 10.7 7.0
English CONTACTS-W-SEL 10,670 7.9 6.0

ANTI-CONTACTS 4,650 15.7 10.7

Table 1. Contact recognition experiment results.

WER[%] α
0 -1 -2 -3

β 0 9.3 10.5 8.2 10.5 7.3 10.5 6.5 10.6
0.25 6.9 10.5 6.4 10.6 6.1 10.7 6.0 10.9
0.5 6.0 10.7 5.9 11.0 5.8 11.6 5.7 13.1
0.75 5.7 12.1 5.8 14.2 5.8 18.4 6.4 26.5
1 6.1 21.7 7.0 32.4 8.4 50.0 11.1 73.6

Table 2. Sweeping α and β WER results on American English for
the Contacts and, in italic, Anticontacts test sets.

5.2. Contact and Anti-contact Recognition Accuracy

We trained language models and built recognition transducers us-
ing methods described in 3.1 and 3.2. The same language modeling
pipeline was used to obtain both language models resulting in mod-
els of comparable contents and total number of parameters. As seen
in Table 1, the class based LM that uses G level replacement outper-
forms the CLG level replacement LM on CONTACTS data sets for
all languages tested: American and British English and German.

We also performed experiments in which we processed the con-
tact lists using affinity signals. We repeated experiments on con-
tact datasets and observed increased recognition accuracy (see rows
CONTACTS-W-SEL in Table 1). In addition, we performed experi-
ments on anti-contact data sets (see rows ANTI-CONTACT in Table
1). Again, the first system caused less false triggering than the sec-
ond for all languages tested.

The results in Table 1 for American English were obtained with
the parameters from Section 2.1 set to α = 0 and β = 0.5. These
values were chosen based on the results of the sweep reported in
Table 2. The optimal values are chosen so that WER increase on an-
ticontacts test sets is minimal while contacts test set WER decrease
is still significant. This shows that Approach 3 allows us to obtain a
better operating point than Approach 1 (α = 0, β = 1) or Approach
2 (α = β = 0).

5.3. Live Contact Selection Biasing Experiments

To further validate that our system improvements are beneficial to
users, we also ran live traffic “holdback” experiments following the
launch of our G-level replacement system using optimal vaules for α
and β described above. In such experiments a random sample of ut-
terances was processed by an alternate recognizer that did not use the
optimized list of contacts. After several weeks, between 15,000 and
20,000 utterances were processed by the experimental and control
servers. This was done anonymously and on-the-fly without saving
any user data.

We found that using contact selection biasing described in sec-
tion 4 increased the “call contact” voice command card triggering
rate by 9% relative, indicating better recall (fewer false negatives)

for recognizing utterances that are intended to be call-contact com-
mands. This was significant to p<.05. The rate at which triggered
cards were accepted (e.g., the user actually placed the call) improved
by 4% relative, indicating better precision (fewer false contact trig-
gers). This was also significant, p<.001.

To further test against false triggering of contacts, we exam-
ined the performance of non-contact voice commands (such as “call
business”) and general voice search. None experienced a significant
degradation in either triggering rates or acceptance rates.

6. CONCLUSION

In this paper, we analyze various components of a contacts voice
command system. We show that using class based language mod-
els and G-level replacement can solve the problem of missing con-
text and OOVs, resulting in improved recognition accuracy. We also
show the importance of careful selection of the LM training data as
well as the importance of adaptive analysis of contact affinities and
insertion reward. Our experimental results confirm that the proposed
methodology can significantly improve speech recognition accuracy
(up to 20% relative WER reduction) on voice commands contain-
ing contact names. Furthermore, this was achieved without causing
overtriggering on non-contact related queries.
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