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ABSTRACT

This paper describes a large scale exemplar-based acoustic model-
ing approach for large vocabulary continuous speech recognition. We
construct an index of labeled training frames using high-level fea-
tures extracted from the bottleneck layer of a deep neural network as
indexing features. At recognition time, each test frame is turned into
a query and a set of k-nearest neighbor frames is retrieved from the in-
dex. This set is further filtered using majority voting and the remain-
ing frames are used to derive an estimate of the context-dependent
state posteriors of the query, which can then be used for recogni-
tion. Using an approximate nearest neighbor search approach based
on asymmetric hashing, we are able to construct an index on over
25,000 hours of training data. We present both frame classification
and recognition experiments on a Voice Search task.

Index Terms— acoustic modeling, exemplar-based recognition,
k-Nearest Neighbor, deep neural network

1. INTRODUCTION

Over the past several decades, the most successful approaches to
acoustic modeling for speech recognition have relied on data-driven
techniques to estimate models such as hidden Markov models (HMM)
or deep neural networks (DNNs) [1]. Improvements in recognition
accuracies were for the most part driven by the use of labeled training
sets of larger and larger sizes and model estimation criteria directly
related to the recognition performance, such as MMI [2].

Over that period of time, the amount of speech data available to
the research community has grown by 2 orders of magnitude, from
tens to several thousand hours of manually transcribed data (e.g. from
Resource Management to Switchboard [3]). While it had a tremen-
dous impact on recognition accuracy, this remains a moderate in-
crease in training resources compared to other fields such as Natural
Language Processing where text corpora for language modeling grew
by about 6 orders of magnitude over the same period (from 1M words
in the Brown corpus [4] to 2T words used in [5]). Similarly, comput-
ing power increased by about 6 orders of magnitude over the same
period, enabling compute-intensive approaches to estimate model pa-
rameters [6].

The slow increase in the amount of acoustic training data can be
largely attributed to the cost of acquiring and manually transcribing
large amounts of audio. In the past couple of years however, thanks
to the deployment of voice services such as Google Voice Search [7]
or Siri [8], it has become possible for several groups in the indus-
try to collect large amounts of in-domain audio data, on the order of
tens of thousands of hours or more, to train acoustic models using
semi-supervised techniques without any need for additional manual
transcriptions [9, 10].

Unfortunately, while an unprecedented amount of acoustic train-
ing data is becoming available, the computing requirements to esti-
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mate state-of-the-art models such as DNNs significantly limit the use
of much larger training sets. As an illustration, training a product-
grade acoustic model on a few thousand hours of audio can take
over a week of computation time even when using a distributed train-
ing approach based on asynchronous stochastic gradient descent [11]
running on a computer cluster. Constructing models on significantly
larger training sets can lead to training times that are no longer man-
ageable.

In this paper, we propose to exploit large and automatically tran-
scribed training sets using an exemplar-based approach to acoustic
modeling [12], by-passing the time-consuming estimation of DNN
model parameters. Our approach builds on the use of high-level
features extracted from the bottleneck layer of a pre-trained DNN
to provide dense feature vectors of reduced dimension [13] suitable
for indexing, and on some recent progress on approximate k-nearest
neighbor (k-NN) search [14, 15] enabling the indexing of billions
of records. The indexing of such an amount of data is enabled by
a computer cluster distributing the storage of the index over a pool
of servers. Unlike some of the previous works on exemplar-based
acoustic modeling [16, 17, 18], our experiments are conducted with
a production-grade large vocabulary speech recognition system using
training sets of up to 25,000 hours of audio.

In Section 2, we describe our k-NN approach for acoustic mod-
eling, followed in Section 3 by frame classification and recognition
experiments on a Voice Search task. Section 4 concludes the paper.

2. KNN-BASED ACOUSTIC MODELING

2.1. Overview

In a hybrid DNN-HMM system, a DNN model is used to provide
an estimate of P (s|x), the posterior probabilities of a set of context-
dependent (CD) state inventory s given an acoustic feature vector x.
This posterior distribution is then scaled using P (s), the prior dis-
tribution of each CD state symbol estimated from the training set,
turning the posterior into a likelihood p(x|s) which can then be used
for recognition.

Following the procedure described in [10] which consists in au-
tomatically selecting high-confidence utterances extracted from the
anonymized audio logs of Google Voice Search, we are able to con-
struct data sets of arbitrary size. Such a semi-supervised procedure
can be used to train acoustic models without relying on any additional
manual transcription. However, when large training sets are used (e.g.
30M utterances, or about 25,000 hours of audio) the time it takes to
train a DNN with a large CD state inventory (typically around 15k CD
states) can become prohibitive as it is essentially a sequential proce-
dure based on stochastic gradient descent (SGD). While approaches
such as asynchronous SGD [11] can parallelize the training, process-
ing large data sets still remains a time consuming procedure.

In this paper, we propose instead to use an existing DNN trained
on 2,500 hours of manually transcribed utterances to compute P (s|x)
on all frames of all utterances of a much larger unsupervised training
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set (up to 25,000 hours automatically obtained from the procedure
described above) and store the resulting frame-level posteriors into
an index, which can be constructed efficiently, even on large training
sets. This index is then used to construct an estimate of P (s|x) for
any test frame x, based on the pre-computed P (s|x) of its k-Nearest
Neighbor (k-NN) [19] frames extracted from the index. Since each
training frame stored in the index is also labeled with its CD-state
(obtained by force-aligning the training set), it is possible to apply a
majority voting rule and restrict the set of k-NN frames associated to
a given query to the subset of frames winning the majority vote.

Two important and related aspects when indexing the training
frames are the choice of the indexing feature, or query, and of the in-
dexing approach. The indexing feature vector should carry discrimi-
native information to enable distinguishing between the different CD-
state labels associated to each frame, without reaching an unduly large
dimension that would prevent the computation of a meaningful dis-
tance between frames. For those reasons, we propose to use the acti-
vations of the bottleneck layer of a DNN as indexing features, similar
to what was done in [13]. In addition, given the size of the index,
a brute force search over the entire index is not feasible and we will
rely instead on an approximate search method based on asymmetric
hashing [15], as described in Section 2.2.

The entire approach is divided into 2 stages. In the first stage,
the equivalent of training, an index of frames is constructed by first
computing for each frame in the training set its indexing feature vec-
tor (using a bottleneck DNN), its CD-states posteriors (using a pre-
existing DNN, not necessarily the same bottleneck DNN that was
used to compute the indexing features), and its corresponding CD-
state label obtained by running forced alignment against the refer-
ence transcript. Once this information is available, the index is built
according to the procedure described in Section 2.2. In the second
stage, corresponding to the recognition step, each frame of every test
utterance is turned into a query by computing its bottleneck layer ac-
tivations, and the index returns a corresponding list of nearest neigh-
bor frames from the training set. The precomputed posteriors of the
nearest neighbor frames are used to construct an estimate of the state
posterior of the query frame, which can be used instead of the poste-
riors provided by the baseline DNN. The advantage of this approach
is that the index can be constructed from a much larger training set
than what was used to train the DNN. Provided that the index is able
to preserve the locality of frames sharing the same CD-state label,
the use of nearest neighbors could improve the estimation of the state
posteriors.

2.2. Approximate Nearest Neighbor Search

We rely on Google’s Scalable Matching toolkit ScaM [15] to retrieve
the approximate nearest neighbors of each query frame. Specifically,
we use Asymmetric Hashing [14] to compute the approximate dis-
tance between feature vectors.

Given an indexing set of M bottleneck layer feature vectors
{vj}Mj=1, with vj ∈ RN , the consecutive elements of each vector
v are divided into N/d d-dimensional subspaces or chunks ci(v).
Within each subspace i, k-means clustering is applied to the set of
feature vectors {ci(vj)}Mj=1 to construct K centroids {Ck

i }Kk=1,
resulting in a total of K × N/d centroids. To index each feature
vector v, we find the closest centroid in each chunk and assign the
integer index of its closest centroid as the quantization label for
ci(v) [20]. Each v is effectively hashed into a N/d-dimensional
vector composed of integers from 1 to K. To find the approximate
nearest neighbors of a query u, we compute the approximate distance
between u and each of the M vectors in the indexing set. The “asym-
metric” term in asymmetric hashing refers to the fact that only vectors
in the indexing set are hashed, not the query [14]. The approximate
distance between u and v is the summation of the distances between

Fig. 1. Illustration of how feature vectors of dimension N are grouped
into N/d chunks of dimension d and independently quantized in each
chunk.

ci(u) and C
Ii(v)
i where Ii(v) is the index of the closest centroid to

ci(v). Since for each chunk of u, there are only K unique pairs to
consider for distance computation, a lookup table of size K×N/d is
first constructed. For each v, it then takes N/d− 1 additions to sum
the corresponding N/d table lookups. Once the approximate dis-
tances to all vectors are computed, it is possible to refine the distance
computation using exact reordering, which consists in computing the
exact distance between the query and its top R neighbors to partially
recover the loss of accuracy due to hashing.

Because of the large number of feature vectors in the indexing
set, the computational complexity of asymmetric hashing is domi-
nated by the approximate distance combination for each vector. In
terms of cost in Floating Point Operations for each query vector, the
cost is O(M(N/d− 1)) with asymmetric hashing when ignoring the
overhead of lookup table construction and exact reordering, while for
ground truth brute force search, the cost is O(M(3N−1)). The speed
up factor brought by asymmetric hashing is proportional to the chunk
size d. Experimentally, we observe a 30x speed up with d = 32, and
15x speed up with d = 16.

2.3. Frame Classification and State Posterior Estimation

Once the index has been constructed, it can be used for both frame
classification and to estimate the state-posteriors of each query frame
from the test set, which can then be used instead of the DNN-provided
posteriors for recognition. For each query, ScaM returns the top k
approximate nearest neighbors frames from the training set. Recall
that each frame in the index is associated with a tuple providing its
pre-computed state posteriors as well as its corresponding ground-
truth CD-state label.

For frame classification, we propose to use majority voting to
predict the label of query: the most frequent label amongst the nearest
neighbors is returned as the hypothesized label.

To estimate the state-posteriors of a query frame, we compute an
average of the pre-computed state posteriors of each frame from its
k-NN list. This contrasts with the approach in [21] where the class
posteriors were computed directly from the class counts in the k-NN
list, which is not applicable when dealing with a large number of
classes (15k in our case) as it would require generating large k-NN
lists. In one approach, called MAJOR, we restricted the list of nearest
neighbor frames used for the averaging to the frames belonging to the
majority vote class. We contrasted this with not using the frame labels
and simply averaging the posteriors from the k nearest neighbor, an
approach denoted as NEAR.
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3. EXPERIMENTS AND RESULTS

3.1. Datasets

Our typical training set consists of about 3 million manually tran-
scribed Voice Search queries (about 2,500 hours), denoted as
3M supervised. In this work we focus on constructing a sys-
tem on a much larger training set consisting of 30 million utter-
ances whose transcriptions are automatically generated by our pro-
duction ASR system, denoted as 30M unsupervised. To investi-
gate the impact of the size of the training set on performance, the
30M unsupervised set is randomly downsampled to construct a 3M
utterances subset (3M unsupervised) and a 300K utterances subset
(0.3M unsupervised). To mitigate the CD-state labels imbalance
that is typical of a speech data set (silence frames are the dominant
classes), we also downsampled the 30M unsupervised set to con-
struct a data set having as many frames as in a 3M utterances set, but
downsampled to provide a near-uniform distribution of the CD-state
labels. This set is denoted flattened unsupervised and matches
3M unsupervised in size. In the following, these data sets are also
called indexing sets. Last, we use 23K Voice Search queries as a test
set.

3.2. DNN Bottleneck Layer Features

The DNN that we use to compute both the indexing features and
the state posteriors of all training frames has 8 hidden rectified lin-
ear units layers each with 2560 units, an input layer of 1040 units
corresponding to 26 stacked frames of 40-dimensional mel-spectrum
log-filterbank energies with 20 frames to the left and 5 frames to the
right of the center frame, and the output softmax layer has an inven-
tory of 14247 CD states. The connections between the last hidden
layer and the output layers are factored into a low rank representation
[22] forming a bottleneck layer of 256 units with linear activations.
A similar architecture could be found in [23]. The activations of the
bottleneck layer are a non-linear and dimensionality reducing trans-
formation of the original input features. This DNN was trained on the
3M supervised training set and defines our baseline system.

For each frame x, a forward pass is applied to obtain the bot-
tleneck layer activations v(x) and state posteriors P (s|x) from the
output layer. Note that we could have used two distinct DNNs, one
to compute the low-dimension activations needed for indexing and
another to compute the state posteriors needed for recognition. In
particular, since the state posteriors are only computed on the train-
ing set, it is possible to use an expensive procedure (e.g. large model
or ensemble of models) to derive those posteriors. In this work, for
simplicity, the same bottleneck DNN is used to provide both the acti-
vation features for indexing and the CD-state posteriors. The ground
truth label l(x) corresponding to each frame is obtained by forced
alignment. Thus the information associated to each frame is a tuple
< x,v(x), P (s|x), l(x) >. We use the bottleneck layer feature vec-
tors v(x) for the nearest neighbors search and the squared L2 distance
to measure the distance between those feature vectors.

3.3. ScaM Setup

The unsupervised indexing set 30M unsupervised contains around
7 billion frames. For indexing purposes, the number of centroids used
in each chunk is set to K = 256. All our experiments are carried
out in an offline batch mode, parallelizing the search computation us-
ing MapReduce [24]. A total of 5, 000 mapper jobs are allocated to
handle the approximate nearest neighbor search, each independently
handing an indexing set of around 1.6 million frames. To obtain the
top 100 neighbors for each query, each mapper should return the top
100 neighbors, which are then sent to the reducer for combination
and exact reordering. However, to process a query set as large as

23K utterances, the whole MapReduce pipeline can generate inter-
mediate data exceeding 200TB. To mitigate this issue, an additional
approximation is made to restrict the list of nearest-neighbors from
each mapper to 5 neighbors. Since the frames are pseudo-randomly
distributed across mappers, the probability of having a single mapper
out of 5, 000 hold over 5 ground truth frames when querying for the
100-nearest neighbors is extremely low and was shown not to impact
performance while significantly reducing intermediate data storage
requirements.

3.4. Approximate Nearest Neighbor Search Accuracy
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Fig. 2. Effect of chunk size d on approximate nearest neighbor search
accuracy

The quality of the approximate nearest neighbor search is crucial
to our work. Since the chunk size d largely determines the speed up
of the approximate search compared to the ground truth brute force
search at the expense of accuracy, we are also interested in how the
value of d affects performance. We use ‘recall at 100’ which repre-
sents the fraction of the ground-truth top n-nearest neighbors which
are present in the returned 100 neighbors, as a quality measure. For
those experiments, the 3M supervised is used as the indexing set
since its labels are considered to be more accurate than those of the
unsupervised training sets and the difference we observe can be more
attributed to the value of d. 5% of test set is used in the evaluation
during which both ground truth top-100 nearest neighbors and ap-
proximate ones are found for each query. From Fig.2, we can see that
good recall can be obtained by setting d = 16, and the accuracy drops
quickly as d increases. It is also interesting to see that the line is al-
most flat with increasing n. This phenomenon is due to quantization
and exact reordering: most of the time the ground truth top-100 near-
est neighbors are either returned by ScaM together or totally missing.

3.5. Frame Classification Error Rate

We also investigate how the intrisic quality of the approximate near-
est neighbor search procedure, as measured by different recall levels
controlled by the chunk size, impacts the frame classification perfor-
mance. Using the same indexing and test sets as above, each test
frame is classified based on majority voting within the k-NN list re-
turned by the index. Results are given in Fig.3 for the same indexing
configuration as in the previous section, with the chunk size d vary-
ing from 16 (high recall configuration) to 256 (low recall). All curves
go down quickly and converge around 50 neighbors. It is worth not-
ing that the plots associated with d ranging from 16 to 64 coincide
with each other. Even though recall at 100 with d = 16 is around
97% while only 80% with d = 64, there is no significant difference
in terms of frame classification error rate. This indicates that neigh-
bors nearest to the query have no advantage over the ones that are not
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within the top-100 nearest neighbors in providing useful information
for label prediction.
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Fig. 3. Effect of chunk size d on frame classification error rate

We then perform frame classification experiments using the un-
supervised indexing sets and the entire test set. The chunk size was
set to d = 32 for ScaM. A characteristic of speech data sets is that
the different CD state labels are very unbalanced. In Fig.4(a), each
frame in the test set is assigned equal weight when computing the
average frame classification error rate, which is consistent with the
goal of frame-wise cross entropy training for DNN. However, the av-
eraged result is inevitably dominated by the frequent CD states. In
Fig.4(b), we assign equal weight to each CD state in averaging which
provides a more informative result on the classification performance
for most of the CD states. In Fig.4(a), all curves quickly decrease
as the number of nearest neighbors considered increases, and then
converge. With larger indexing sets, the result of k-NN gradually ap-
proaches the baseline DNN performance. We observe a similar trend
in Fig.4(b). What’s different however is that curves slightly bounce
back for large number of neighbors which indicates that frame sam-
ples are not dense enough for less frequent CD states, especially for
smaller indexing sets. In Fig.4, different from other unsupervised in-
dexing set, flattened unsupervised achieves the best performance
when equal weight is assigned for each CD state at the expense of
much worse performance for frame error rate sample-wise averaged.
Since sample-wise averaging is more related with recognition per-
formance than state-wise averaging, this flattened indexing set also
failed to generate competitive result in our ASR experiments.

3.6. Automatic Speech Recognition Experiments

We finally investigate the performance of our framework on ASR ex-
periments. The baseline DNN system trained on 3M supervised
operates at 11.2% WER. Our proposed approach using an index con-
structed on 30M unsupervised reaches 11.7% WER at best, 5%
relative worse than the DNN baseline. The use of majority voting
(MAJOR) to limit the set of training frames used to estimate the
CD-state posteriors does not outperform not using any class-labels
(NEAR). Similar results were obtained when restricting the majority
voting to context-independent state labels or phone labels. We also
experimented with using the distance between the query and each of
its nearest neighbors to derive a weighted average of the CD-state pos-
teriors but did not observe any gain in performance. From Table.1, we
can also observe the trend that larger indexing sets lead to better per-
formance. Focusing on NEAR, we see that 3 to 5 neighbors seem to
be a good choice for the state posteriors estimation in both accuracy
and efficiency. While our best system did not outperform a well tuned
DNN system trained on manually labeled data, it is still promising to
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Fig. 4. Frame classification error rate with various sizes of indexing
sets

see that with a large unsupervised data set, our framework can gener-
ate competitive result from a totally different perspective.

Indexing set number of neighbors
1 3 5 10

30M unsupervised MAJOR 12.1 11.9 11.9 11.9
30M unsupervised NEAR 11.9 11.7 11.7 11.7
3M unsupervised NEAR 12.2 12.1 12.1 12.1
0.3M unsupervised NEAR 12.7 12.5 12.5 12.6
Hybrid DNN baseline 11.2

Table 1. WER(%) of ASR experiments with various sizes of indexing
sets and numbers of neighbors for SPs averaging

4. CONCLUSION

In this paper we have explored the use of k-nearest neighbors over
a large index of frames to compute for each test frame an estimate
of its CD-state posteriors. We have shown that the activations of the
bottleneck layers of a DNN can be used to construct discriminative
features for indexing purposes. In addition, we have illustrated that
an index of over 7B frames or 25,000 hours of speech can be con-
structed and searched using an approximate nearest neighbor search
approach based on asymmetric hashing [14]. As it becomes possible
to collect very large speech databases, we are hoping that advances
in approximate nearest neighbor search can support the indexing of
longer acoustic units and provide alternative approaches to acoustic
modeling.
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