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ABSTRACT

In the analysis of speech production, information about the voice
source can be obtained non-invasively with glottal inverse filtering
(GIF) methods. Current state-of-the-art GIF methods are capable
of producing high-quality estimates in suitable conditions (e.g. low
noise and reverberation), but their performance deteriorates in non-
ideal conditions because they require noise-sensitive parameter esti-
mation. This study proposes a method for noise robust estimation of
the voice source by creating a mapping using a deep neural network
(DNN) between robust low-level speech features and the desired ref-
erence, a time-domain glottal flow computed by a GIF method. The
method was evaluated with two GIF methods, of which one (quasi
closed phase analysis, QCP) requires additional parameter estima-
tion and the other (iterative adaptive inverse filtering, IAIF) does
not. The results show that the proposed method outperforms the
QCP method with SNRs less than 50–20 dB, but the simple IAIF
method only with very low SNRs.

Index Terms— Voice source estimation, glottal inverse filtering,
deep neural network, noise robustness

1. INTRODUCTION

In the production of voiced speech, the quasiperiodic fluctuation of
the vocal folds generates an input signal to the vocal tract. In acous-
tical terms, this excitation signal is referred to as the glottal volume
velocity waveform or the glottal flow. More generally, the waveform
is called the voice source or the glottal source. This signal carries
information about the type of phonation and pitch that can be as-
sociated with various vocal cues corresponding to the speaker, e.g.
emotional state, individual speech characteristics, and possible voice
pathologies. Unfortunately the real glottal flow is elusive to direct
acoustical measurement due to the hidden location of the vocal folds
inside the larynx. By using glottal inverse filtering (GIF), however,
the glottal source can be estimated non-invasively from the speech
pressure waveform recorded by a microphone outside the lips. GIF
methods operate by applying such anti-resonances to a segment of
recorded speech that the effects of the vocal tract formants become
canceled, hence yielding an estimate of the glottal flow.

Examples of known GIF methods are closed phase covariance
analysis (CP) [1], iterative adaptive inverse filtering (IAIF) [2], and
complex cepstral decomposition (CCD) [3] (for more details, see
recent reviews [4–6]). All the above methods, however, have been
designed to work in ideal conditions in which the speech signal to be
analyzed is typically a long sustained vowel produced in an environ-
ment with minimal noise and reverberation. Experiments conducted
in ideal laboratory conditions, however, cannot be generalized to
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more realistic scenarios in which the glottal flow is to be estimated,
for example, from continuous noisy speech. In these realistic sce-
narios, the accuracy of most GIF methods unfortunately deteriorates,
and this holds true especially for the (theoretically) more powerful
state-of-the-art methods such as CP, CCD, and quasi closed phase
analysis (QCP) [7], which require precise estimates for glottal clo-
sure instants (GCIs). More straightforward methods, such as IAIF,
do not require additional parameter estimation, which makes their
performance more robust to noise. This in turn makes simple GIF
methods applicable in modern data driven applications, such as sta-
tistical parametric speech synthesis [8–10], which call for estimation
of the glottal flow from continuous speech signals that might have
been recorded in non-ideal conditions. Enhancing the robustness of
the state-of-the-art GIF methods could thus in principle result in a
better performance in practical applications, particularly for tech-
niques, such as statistical speech synthesis, in which glottal source
estimates are used with model training from long speech recordings.

This study aims to enhance the robustness of the state-of-the-
art GIF methods in low signal-to-noise ratio (SNR) conditions by
creating a multi-speaker mapping between robust low-level speech
parameters and the output of a reference GIF method. The mapping
is done by utilizing a deep neural network (DNN), which is a power-
ful tool for finding nonlinear interactions between input and output
features, even if the data is highly correlated [11]. The motivation for
the study is to alleviate the effects caused by unreliable parameter es-
timation in the state-of-the-art GIF methods in low SNR conditions
hence enabling more accurate estimation of the glottal flow in non-
ideal conditions. The DNN-based approach to glottal source mod-
eling and estimation is relatively little explored, which is the reason
why this study should most of all be treated as a proof-of-concept.
Background information on the research topic and the selected GIF
methods are presented in Section 2, and the proposed method is ex-
plained in detail in Section 3. The used speech database, experimen-
tal setup, and results are detailed in Section 4. Finally, summary of
the findings and discussion are provided in Section 5.

2. BACKGROUND

In automatic speech recognition (ASR), DNNs have provided sig-
nificant improvements in recognition accuracy compared to previous
state-of-the-art methods [11]. Also in text-to-speech (TTS) synthe-
sis, recent studies utilizing deep learning architectures have provided
promising results (e.g. [12, 13]). These improvements are enabled
by the ability of a deep learning architecture to model complex de-
pendencies between input and output features and utilize correlated
high-dimensional data [11].

In ASR and TTS, a mapping is created between acoustic and lin-
guistic features. In recent work on voice source modeling in statis-
tical parametric speech synthesis [14, 15], a similar mapping using
DNN is created between acoustic speech features and glottal flow
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time-domain waveform. The results in [14,15] indicate that the glot-
tal flow waveform can be successfully predicted from higher-level
speech features, and the DNN-based system was rated equal to a
high-quality baseline system in subjective listening tests. The input
features in [14, 15] included, e.g., spectrum, gain, and fundamen-
tal frequency of speech, which all contain information on the voice
source, and can be rather easily and robustly estimated from a speech
signal. The DNNs trained in those two studies were speaker depen-
dent, but a speaker-independent voice source DNN was trained and
successfully used for synthesis in [16]. Utilizing the same principle,
it is possible to predict the glottal flow signal from any speech frame
using a speaker-independently trained DNN, which may be useful
also in domains outside TTS.

In the study by Kane et al. [17], artificial neural network was
successfully used for estimating the open quotient for different voice
qualities using spectral features of speech. In the current study, the
aim is to estimate the entire time-domain glottal flow waveform. Al-
though the glottal flow estimate predicted by the DNN might not be
as accurate as the one computed by a state-of-the-art GIF method
(e.g. [7]), there are benefits in the afore-mentioned approach. First,
the glottal flow estimate can be predicted using simple and robust
speech features, which enables glottal flow estimation even if the
speech frame is corrupted by noise. Especially more complex glot-
tal inverse filtering methods that are subject to vulnerable parameter
estimation (e.g., extraction of GCIs) suffer from noise [18] and other
distortions (such as phase distortion [19]). Secondly, the estimation
of the entire glottal flow waveform instead of only few descriptive
parameters may have more practical applications, as shown in speech
synthesis [14–16].

In this study, the IAIF [2] and QCP [7] methods were selected
for estimating the initial glottal flow. IAIF is a widely known GIF
method that works by in turn obtaining more accurate estimates of
the spectral shape of the glottal flow and the vocal tract transfer func-
tion. It does not require additional parameter estimation, so it is se-
lected for the study on the grounds of being a noise-robust baseline
method. The QCP method is shown to provide better glottal flow es-
timates than IAIF [7], but requires additional parameter estimation
that is sensitive to noise.

3. PROPOSED METHOD

The flow chart of the proposed method is illustrated in Figure 1.
First, a large multi-speaker speech database is required in order to
enable the glottal flow estimation for any speaker with a reasonable
accuracy. The amount of data is also beneficial for the DNN train-
ing, which usually performs better when the amount of data is in-
creased. Next, an existing glottal inverse filtering method is applied
to the speech database to estimate the glottal flow of voiced speech.
The glottal flow signal is segmented to individual two-pitch-period
glottal flow segments, which are resampled to a constant length, win-
dowed using the Hann window, and normalized in energy. Speech
features extracted from the database are then linked with the cor-
responding glottal flow segments, and a mapping is established by
training a DNN. The speech features can include any parametric
representation of speech that enable predicting the glottal flow wave-
form. The most obvious choices are, e.g., spectral information, fun-
damental frequency, and frame energy, which all contain information
from the voice source.

The DNN consists of the input layer, two hidden layers, and an
output layer. The size of the input and output layers are defined by
the dimensions of the input feature vector and the size of the re-
sampled glottal flow waveform, respectively. With 16 kHz sampling
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Fig. 1. Illustration of the proposed method.

rate, the length of the glottal flow segment is set to 400 samples,
which results in 400 neurons in the output layer. The DNN archi-
tecture is based on the experiments conducted in [15,16], where 200
neurons in the hidden layers was found to perform best. Sigmoid ac-
tivation functions are used in the hidden layers and linear activation
functions in the output layer. The network weights are initialized by
random Gaussian numbers with zero mean and standard deviation of
0.1. The network is then trained using back-propagation. The DNN
code is based on [20] and modified for the purpose of the study.

After the DNN training is converged, the DNN network can be
used to generate estimates of the glottal flow using new, possibly
noisy speech data. The same feature extraction is applied to the new
speech signal, and the extracted features are then fed to the trained
DNN, which finally outputs the glottal flow estimate.

4. EXPERIMENTS

The experiments conducted in this study evaluate the SNR depen-
dent performance of the proposed method using various input speech
features. The performance, i.e., the accuracy of the glottal flow es-
timation, is compared to the initial glottal flow estimates obtained
with the two selected inverse filtering methods, IAIF and QCP. All
implementations of the proposed method were trained and tested us-
ing a large multi-speaker corpus of high-quality speech recordings.

4.1. Speech data

A multi-speaker speech database was constructed for the study. Ten
high-quality male speech databases, all designed for speech synthe-
sis purposes, were used as the speech data. Only male speech was
selected for this preliminary study since the estimation of the voice
source from female speech is generally more difficult than from male
speech. Also training a mixed-gender DNN may result in less accu-
rate results due to differences in male and female voice source char-
acteristics. Altogether, the speech database consisted of 11 042 sen-
tences, comprising about 17.5 hours of speech data. The languages
and number of sentences of each speaker in the database are shown
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Table 1. Details of the speech data.
Speaker Gender Language Sentences Length (min)

1 Male Finnish 429 27
2 Male Assamese 1466 127
3 Male English 1138 80
4 Male English 1131 51
5 Male Gujarati 450 123
6 Male Hindi 875 121
7 Male Finnish 692 67
8 Male English 2022 134
9 Male Rajasthani 1369 133
10 Male Telugu 1470 187

11 042 1050 = 17.5 h

in Table 1. All speech was sampled at 16 kHz. Before feature ex-
traction and glottal inverse filtering, the loudness of the speech files
was normalized using the method in ITU-T P.56 [21]. The polarity
of each database was checked and corrected in case it was inverted
in order to guarantee correct modeling of the glottal flow waveform.

4.2. Experimental setup

The speech data was analyzed using 30 ms frames at 15 ms inter-
vals, resulting in a total number of 1 917 832 voiced frames. The
frames were divided into a training set consisting of 98% of the total
number of frames, and a test set containing the remaining 2%. The
frames were inverse filtered with the IAIF [2] and QCP [7] methods
and input feature extraction was performed on the frames according
to the desired system setups. Fundamental frequency (f0) and frame
energy (E) were included in all test systems (for MFCCs in the form
of MFCC-0), along with a varying spectral feature representation.
The selected spectral features contained varying parameter orders of
line spectral frequencies (LSFs) [22], mel-frequency cepstral coef-
ficients (MFCCs), and also GlottHMM vocoder [9, 10] vocal tract
and voice source LSF estimates. The total number of different input
vector combinations was 7, resulting in a total number of 14 systems
for the whole experiment. A detailed list of the evaluated input and
output parameter combinations is presented in Table 2.

In the experiment, white Gaussian noise was added to the test
set frames according to the desired SNR. The SNR was varied from
virtually clean speech (80 dB) to highly corrupted speech (0 dB) us-
ing 10 dB steps. Clean and corrupted inverse filtering estimates were
then obtained with both GIF methods. The DNN input parameters
were computed from the corrupted frames and fed into the DNN to
obtain the estimates, which were then compared to the clean signal
estimates of the respective methods.

4.3. Evaluation methods

The accuracy of glottal flow estimation in comparison to the clean
reference was measured using four metrics. The normalized am-
plitude quotient (NAQ) [23] was used, which is a widely used and
robust measure of voice quality. The magnitude difference between
the first and the second harmonics, denoted as H1H2 [24], was used
for measuring the performance in the spectral domain. The mean
squared error (MSE) between the initial glottal flow estimate and the
one predicted by the DNN was also measured, which is maybe the
most important measure here, since the objective of the proposed
method is to estimate the entire glottal flow signal. Finally, spec-
tral distortion (SD) [25] was also measured, which is a widely used
distortion measure that quantifies distortion along all frequencies.

Table 2. Evaluated input parameters and the GIF method used in the
computation of the output glottal flow estimate.

System Input Output

IAIF-GlottHMM f0, E, 30×LSFvt, 10×LSFs IAIF
IAIF-LSF18 f0, E, 18×LSF IAIF
IAIF-LSF30 f0, E, 30×LSF IAIF
IAIF-LSF46 f0, E, 46×LSF IAIF
IAIF-MFCC13 f0, 13×MFCC IAIF
IAIF-MFCC30 f0, 30×MFCC IAIF
IAIF-MFCC46 f0, 46×MFCC IAIF
QCP-GlottHMM f0, E, 30×LSFvt, 10×LSFs QCP
QCP-LSF18 f0, E, 18×LSF QCP
QCP-LSF30 f0, E, 30×LSF QCP
QCP-LSF46 f0, E, 46×LSF QCP
QCP-MFCC13 f0, 13×MFCC QCP
QCP-MFCC30 f0, 30×MFCC QCP
QCP-MFCC46 f0, 46×MFCC QCP

Table 3. Average errors over all SNRs for the 14 systems in Table 2
and for the two reference GIF methods, IAIF and QCP. NAQ error is
relative, H1H2 and SD errors are in dB, MSE is absolute. Smallest
errors of the test systems are highlighted with bold font.

System NAQ H1H2 MSE SD

IAIF-Ref 0.10 1.32 0.34 4.20

IAIF-GlottHMM 0.25 2.32 0.44 7.11
IAIF-LSF18 0.25 2.32 0.44 6.68
IAIF-LSF30 0.26 2.27 0.44 6.53
IAIF-LSF46 0.26 2.26 0.44 6.36
IAIF-MFCC13 0.24 2.35 0.43 6.58
IAIF-MFCC30 0.20 2.38 0.40 6.71
IAIF-MFCC46 0.22 2.35 0.40 6.87

QCP-Ref 0.18 1.64 0.50 5.63

QCP-GlottHMM 0.29 2.43 0.45 5.98
QCP-LSF18 0.23 2.41 0.43 6.18
QCP-LSF30 0.25 2.35 0.43 5.92
QCP-LSF46 0.22 2.37 0.43 6.34
QCP-MFCC13 0.24 2.29 0.43 5.75
QCP-MFCC30 0.24 2.37 0.43 5.94
QCP-MFCC46 0.23 2.47 0.42 6.01

4.4. Results

The obtained average results are shown in Table 3, and a detailed
graph of the results is presented in Figure 2. All of the tested sys-
tems are able to reproduce the output of the reference method with
very similar accuracy compared to each other. Figure 2 also illus-
trates that the error of the DNN output stays very stable with vary-
ing SNR, which suggests that the DNN-based systems are robust
to noise. However, even though the errors for the IAIF and QCP
based systems are similar, the proposed method is only truly advan-
tageous for the QCP method for SNR cases below 50–20 dB, de-
pending on the used error metric, as those are the levels where the
errors of the proposed method become smaller than the errors for the
reference method. For IAIF, most of the metrics give errors smaller
than the baseline reference only for very low SNRs from around 0
to 10 dB. These results are in line with the initial speculations on
the performance of the proposed method, i.e., the method requir-
ing noise-sensitive parameter estimation can benefit from the DNN
mapping, whereas the more simple method is noise-robust in its own
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right.
An illustration on the ability of the proposed method to produce

noise robust glottal flow estimates is presented in Figure 3, where
the output of the QCP-LSF46 system is compared to the reference
outputs of the QCP and IAIF methods with varying SNR. The DNN-
based method outputs a slightly averaged glottal flow waveform,
missing some of the finer details of the reference waveform with
higher SNRs. However, in this example the shape of the reference
QCP waveform starts to deteriorate starting from SNR of 40 dB, after
which the deterioration is very severe. Meanwhile, the DNN output
is very consistent until 10 dB SNR, after which the overall shape
starts to slightly shift, but still preserving the shape of a glottal flow
derivative waveform. The IAIF reference deteriorates less than the
QCP reference, but also with very low SNRs, the glottal flow shape
is severely distorted, while the DNN output maintains a consistent
shape.

5. DISCUSSION

The experiments show that the proposed DNN-based voice source
estimation method yields noise robust estimates of the glottal flow
signal. However, the commonly used voice quality metrics, such as
NAQ and H1H2, show relatively high errors at all SNRs, even with a
clean signal. This is due to the averaging effect of the DNN, which,
for example, outputs pulses with slightly over-smooth waveform at
the GCI, which in the natural glottal flow signal shows a rather
abrupt discontinuity. Since NAQ is higly sensitive to the abrupt-
ness of the signal at the GCI, it is obvious that the errors of the
DNN-based methods measured with NAQ are rather high. Despite
the relatively high errors in these conventional voice quality met-
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Fig. 3. Example glottal flow waveforms generated by the proposed
DNN-based method (QCP-LSF46), and the QCP and IAIF methods
using varying SNR. The DNN-based method clearly gives more con-
sistent results with decreasing SNR.

rics, the MSE instead shows that the glottal flow signal is very close
to the clean reference estimate. With lower SNRs, the DNN map-
ping is very robust to noise, being able to yield reasonable glottal
flow estimates when other methods give very distorted output (see
Figure 3). Moreover, the studies in [14–16] show that despite the
somewhat over-smooth characteristics of the glottal flow output from
the DNN, the generated glottal flow signal is useful and feasible in
speech synthesis. This suggests that estimating the entire glottal flow
signal instead of predicting only a few descriptive parameters (such
as in [17]) may be useful in other applications as well.
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