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ABSTRACT 

 

Acoustic/linguistic modification of speech production with 

respect to auditory feedback is an important research domain for 

robust human-to-human and human-to-machine communication.  

For instance, in the presence of environmental noise, a speaker 

experiences the well-known phenomenon termed as Lombard 

effect.  Lombard effect has been well studied for normal hearing 

listeners as well as for automatic speech/speaker recognition 

systems.  However, limited effort has been employed to study if 

the speech production of cochlear implant (CI) users is 

influenced by the auditory feedback.  The purpose of this study is 

to analyze the speech production and natural language model of 

CI users with respect to environmental changes.  A mobile 

personal audio recording from continuous single-session audio 

streams collected over an individual's daily life was used for our 

study.  The findings from this study will provide fundamental 

knowledge on the characteristics of speech production under 

Lombard effect in CI users.  These specific variations in speech 

production can be leveraged in new algorithm development and 

further applications in speech systems to benefit cochlear implant 

users.
 
 

 

Index Terms— Speech analysis, speaker variability, cochlear 

implant, Lombard effect, natural language model 

 

1. INTRODUCTION 

 

Lombard effect is well-known phenomenon a speaker 

experiences in the presence of noise [1-4].  This phenomenon is 

perceptually realized with an increase in vocal effort such as 

amplitude, fundamental frequency, or formant location, and helps 

to maintain speech intelligibility over challenging listening 

environments.  It is well documented that Lombard effect not 

only affects the intelligibility in speech communication, but it 

also degrades speech technology such as automatic speech 

recognition (ASR) and speaker identification (SID) [5-8].  

Although well studied for normal hearing listeners and automatic 

                                                 
 This work was supported by Grant R01 DC010494-01A awarded 

from the National Institute on Deafness and other Communication 

Disorders (NIDCD) of the National Institutes of Health (NIH). 

 

speech/speaker recognition, Lombard effect has received little 

attention in the field of cochlear prostheses. 

A number of reports suggest that whether the speech 

production of cochlear implant users is under control of any form 

of auditory feedback.  Some studies examined the short-time 

effect of auditory feedback on speech production, which is 

related to the Lombard effect [9, 10].  Svirsky and Tobey support 

that rapid change in formant frequencies of vowels produced by a 

single female user of a Nucleus multichannel implant was 

observed when turning speech processor either on or off [9].  It is 

also argued by Svirsky et. al [10] that a number of speech 

parameters, such as fundamental frequency and vowel duration, 

that are available within relatively short-time constraints (few 

seconds or less) demonstrated immediate response to the speech 

processor on-versus-off conditions.  These findings, however, 

were established when auditory feedback is artificially distorted, 

thus do not necessarily provide information about speech 

production in real communication conditions, such as noisy 

environments. 

The objective of this study is to analyze speech 

production of cochlear implant users with respect to 

environmental noise conditions.  In addition, the study aims to 

investigate the effect of auditory feedback on speech production 

in naturalistic daily environments.  We observe and study this 

effect using mobile personal audio recordings from continuous 

single-session audio streams collected over an individual's daily 

life.  Prior advancements in this domain include the "Prof-Life-

Log" longitudinal study at UT-Dallas [11, 12].   

In this study, four CI users who were all post-lingual 

deafened adults participated by producing spontaneous speech in 

various naturalistic noisy environments located on college 

campus including: office, hallway, outdoors on campus, and 

college gameroom.  A number of parameters that are sensitive to 

Lombard speech were measured from the speech.  In this 

research, analysis of speech production was accomplished in 

three ways: (i) characteristics of background noise and listening 

environment, (ii) acoustic analysis of speech production, and (iii) 

word selection and natural language model analysis.  For the first 

part, two approaches were selected for knowledge on real-world 

environments.  These are long-term averaged spectra and signal-

to-noise ratio.  The second part of the analysis is regarding 

feature extraction of glottal voice source from the speech.  This 

includes fundamental frequency and glottal spectral slop.  Lastly, 

a number of measures for lexical/linguistic selection of each 
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Table 1: Text transcription analysis.  All measurements except the 

conversation time were averaged from 4 CI individuals.  The 
conversation time includes communication between the CI and NH 

participants. 
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speaker were investigated in terms of different listening 

conditions.  In this part, word rate, unique word rate, 

conversational turn rate and perplexity of language model were 

considered.  These analyses mentioned above will help us to 

explore the dependency of variation of speech upon changing 

environmental conditions. 

 

2. APPLICATIONS 

 

Long-term personal audio recordings are to be the wide range of 

potential application for cochlear implant recipients.  This type of 

recording contains an abundance of information regarding 

speaker, speech, environments, language, etc.  In recent years, 

speech and language processing capabilities (ASR, SID, etc.) in 

conjunction with personal mobile computing devices (e.g., 

smartphone [13], google glasses [14]) have opened new doors for 

data mining.  The most promising use of naturalistic audio 

streams for CI users is in analyzing language acquisition and 

development of infant and young children [15].  These analyses 

have been performed by measuring various metrics of interest, 

such as adult word count, adult-child turn taking, child 

vocalizations, etc.  Another potential application of personal 

audio recording of CI recipients is in the use of screening and 

diagnosis procedures for speech-related disorders in early 

childhood [16].  For example, analysis of acoustic features from 

realistic audio data can provide the capability of differentiating 

children with and without disorders such as autism or language 

delay.  Furthermore, the capability of audio environment 

detection in conjunction with appropriate environmental-

optimized coding algorithm can also be of practical use in 

personal audio recordings of CI users.  These user customized 

paradigms can help us tap into the full potential of existing CI 

devices, which are currently not optimized for either the 

individual patients or clinicians for different users/environments 

[17, 18]. 

 

3. CORPUS DEVELOPMENT 

 

The corpus here is designed to capture audio from a subject's 

daily life and investigate the influence of auditory feedback on 

speech production in naturalistic settings.  We use the LENA 

device [19] for collecting naturalistic audio from CI users in this 

study.  The LENA is a lightweight compact digital audio 

recorder that is capable of capturing mono audio data 

continuously for up to 16 hours.  Fig. 1(a) demonstrates how the 

device is positioned for collecting naturalistic audio data using 

LENA.  For capturing speech signal, a cross pack which was 

made of meshed-material was used to hold the device inside a 

pocket for secure and consistent placement. The device was 

located at the center of the chest where it is stationary with 

respect to the subject's mouth.  This makes it possible for the 

unit's microphone to detect the speech signal more robustly 

against environmental noise during data collection. 

 A total of four CI users (mean age: 65 yrs.) who were 

fitted with the Nucleus device from Cochlear Ltd. participated in 

this study.  All CI users were post-lingually deaf (lost hearing 

after the age of 18) and used their cochlear implant devices for at 

least four years.  A total of four normal hearing (NH) speakers 

(mean age: 37 yrs.) participated as a conversation partner of the 

CI participants.  The CI speakers in this research acted as the 

primary speaker, while the NH listeners served as the secondary 

speaker/listener.  Note that the objective of this study is to 

analyze the speech production of CI users. 

Naturalistic audio was collected in 4 designated 

locations on a college campus: (i) office, (ii) hallway, (iii) outside 

on campus, and (iv) college gameroom, shown in Fig. 1(b).  

Noise conditions including type, mixture, and level varied greatly 

across the four conditions.  In each location, prior to the subject's 

speech production, 3 minutes of background noise was recorded.  

These background noises were used to assess subjects' listening 

environments for subsequent analyses.  Following the 

background recording, subjects were asked to perform free 

conversation between each other for 5 minutes in each location.  

A list of topics was provided to participants as a suggestion 

before the test, which included general topics, such as sports, 

news, weather, movies, etc.  The subjects were noted that they 

are able to pause the audio recording anytime when they intended 

to or when privacy and confidential concerns arose during the 

recording. 

Figure 1: Naturalistic data collection for CI subject: (a) setup for 

data acquisition using the LENA unit, and (b) four locations on 

UTD campus for data collection. 
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Figure 2: (a) Spectral characteristic of real-world maskers using the 

long-term averaged spectrum.  (b) Evaluation of subject's listening 
environment using the signal-to-noise ratios (SNR) with and without 

Lombard effect respectively. 

A set of acoustic labels were assigned to each audio 

track based on events in that space (i.e., sound events in the 

office space were different than outside in public areas).  Every 

single utterances (sentence, phrase, word, and syllable) produced 

by CI speakers were identified manually based on listening 

audio.  These labels were then used to compute acoustic 

parameters, removing the leading and trailing silent intervals.  

Additionally, acoustic environments (e.g., office, hallway, etc.) 

and speakers (e.g., SPK1, SPK2, etc.) labels were applied to the 

recordings.  Finally orthographic transcripts for each utterance 

were created by human transcriber while listening to the audio.  

Here, only a single annotator was used for both acoustic and 

orthographic transcript labelling task for consistent evaluation.  

Table 1 summarizes general analysis of manual text transcripts 

obtained from the 4 CI users' communication.  

 

4. ANALYSIS 

 

Next in this section, we consider methods for analyzing 

production of conversational speech as a function of varying 

environment, and present results across the Lombard effect 

environments. 

 

4.1. Noise/Environment Analysis 

 

First, we analyzed background noise as well as subject’s listening 

environment prior to analysis of speech production.  To that end, 

we used two metrics: (i) long-term averaged spectrum, and (ii) 

signal-to-noise ratio (SNR).  The long-term averaged spectrum 

was calculated using the pure background noise audio sampled 

during data collection.  The SNR measures were simply obtained 

from subtracting the overall energy level of the background noise 

from that of speech production in dB scale.  Two different 

approaches were employed to predict SNR levels with and 

without Lombard effect.  While the SNR without Lombard effect 

was calculated using the office speech signals as the default clean 

reference for all locations, the SNR with Lombard effect was 

estimated using the speech signal with increased vocal intensity 

at each noisy environment.  It has been shown in [7] that the type 

of 

noise as well as level causes the production of different "flavor" 

of Lombard effect.  Note that in this study, we established the 

office environment as the quiet baseline, assuming that the 

speech produced in this location was neutral.  

Fig. 2(a) shows the long-term averaged spectrum for 

the four real-world maskers.  It is shown from the figure that the 

office environment has the least spectral impact in overall 

spectral energy versus the other three environments.  When 

compared to the office environment, significant increases in  

energy values were observed in most frequency bands, and this 

difference enhanced in moving from hallway to outside and 

gameroom conditions (i.e., approximately a 25dB increase in 

high frequency noise level from office to gameroom).  

Fig. 2(b) shows the signal-to-noise ratios (SNRs) with 

respect to environments.  In the figure, two bars on the left- and 

right-hand side for each condition correspond to the SNR with 

and without Lombard effect respectively.  It clearly shows that 

the most favorable environment is office, and the most 

challenging scenario is gameroom in terms of speech quality.  

The SNR level without Lombard effect decreases by 27dB in 

office environment and down to 1dB when the environment 

switches to gameroom (left-side bar-graph plot).  The decreased 

SNRs were, however, recovered due to the presence of Lombard 

effect by +1dB, +9.1dB and +10.3dB in hallway, outside, and 

gameroom respectively (right-side bar-graph plots).  Therefore, 

the ability to include Lombard effect production within these 

environments provides from +1 and up to +10.3dB boost in SNR. 
 

 

4.2. Speech Analysis 

 

In order to examine the acoustic changes in speech production 

parameters, two matrices, fundamental frequency (F0) and glottal 

spectral slope (GSS) were considered [20-22].  F0 was computed 
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Figure 3: Acoustic analysis of speech production:  Upper panel is the 
variation of the speech parameters, (a) fundamental frequency (F0) 

and (b) glottal spectral slope (GSS), as a function of varying SNR 

levels. Lower panel is the probability distributions of each parameter 

for the two most separated conditions. 
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Figure 4: Word selection and natural language model analysis using 

(a) word rate, (b) unique word rate, (c) conversational turn rate and 

(d) perplexity for each individual CI users. 

using Wavesurfer software [23].  GSS was computed from the 

glottal source spectrum of the speech signal over the frequency 

range from 500Hz to 2000Hz (2 octaves).  A technique for 

estimating the glottal source spectrum has been adopted from 

Voicebox software [24].  The same analysis window of 20ms 

with 10ms frame increment was employed for both 

measurements at a 16 kHz sampling rate.  Note that while some 

variability among individual subjects was observed, we consider 

average same conditions in this section. 

In Fig. 3(a) and 3(b), the variation of F0 and GSS 

parameters are shown as a function of varying SNR levels.  Note 

that SNR levels presented in each plot are measured assuming 

office speech signal as a clean default reference.  In general, both 

parameters appear to be valid relayers for Lombard effect.  For 

outside and gameroom conditions, the mean values for both 

speech parameters are shown to increase significantly compared 

to quiet baseline (office) as well as hallway condition.  

Fig. 3(c) and 3(d) present two distributions for F0 and 

GSS parameters respectively to illustrate how much they are 

separated between each other.  In these figures, the two most 

separated conditions for each parameter were selected, these are 

hallway and outside for F0 and hallway and gameroom for GSS.  

The results indicate that the distribution of each parameter varied 

significantly across conditions on campus.  The relative increase 

between the two conditions were approximately +20% for F0 and 

+5.3% for GSS. 

 

4.3. Language/Word Analysis 

 

Lastly, four parameters that span the variation of word/linguistic 

structure in spontaneous speech were considered: (i) word rate 

(WR), (ii) unique word rate (UWR), (iii) conversational turn rate 

(TR), and (iv) word perplexity (PPL).  The unique word rate 

refers to counts of unique individual words over time, while the 

word rate includes reoccurrences of the same words.  These 

parameters were obtained based on analysis of manual text 

transcripts previously given in Table 1.  The WR, UWR and TR 

were computed from the number of words, unique words, and 

conversational turns divided by CI's speech time.  The PPL was 

estimated from the bi-gram natural language model trained using 

our corpus (CI's spontaneous speech) compared to the baseline 

language model trained using the Switchboard corpus (NH's 

spontaneous speech) [25, 26].  The creation and evaluation of the 

language models used in this test were supported via the 

capability of SRILM toolkit [27].  It is noted that since word 

selection and perplexity is highly speaker- and corpus-dependent, 

data for individual speakers were not combined in this section. 

Fig. 4(a)-(d) show the distributions of WR, UWR, TR 

and PPL parameters respectively for 4 CI speakers across 

different environments.  From the results, greater variation in 

each linguistic parameter across different environments is 

observed.  In addition, large variability among the individual 

speakers was also seen in some cases.  For example, significant 

larger shifts in SPK2 for UWR and SPK4 for PPL were 

observable when compared to the other three speakers in the 

location of outside.  The dispersion of these parameters was 

found to be much higher relative to the other conditions.  From 

these results, it is clearly seen that no consistent pattern of 

language/word shift over environments was found across 

parameters even if there were large variation within different 

speakers/environments.  This is due to word and language 

features are likely to be sensitive to speakers and corpus, rather 

than that of listening environments. 

 

5. DISCUSSION AND CONCLUSIONS 

 

In this study, we analyzed the speech production of CI users 

using mobile personal audio recordings collected over an 

individual's daily life.  The results indicated that Lombard effect 

has been found in speech of cochlear implant users who are post-

lingually deaf adults.  Speakers increased their vocal efforts, such 

as fundamental frequency and glottal spectral slope significantly 

in challenging noisy environments to ensure intelligible 

communication in the presence of noise.  In addition, it was 

observed that variation in word selection and language perplexity 

occurred within different speakers/environments, even if there is 

no consistent pattern of change across parameters. 

The above result has the potential of playing an 

important role in further applications of speech and language 

technology especially for hearing impaired patients with cochlear 

implant.  Historically, we know that different environments will 

have different noise types and levels.  Traditional front-end 

processing for hearing aid and cochlear implants, for example, 

focus on noise suppression for minimizing the impact of noise, 

and are not optimized for different environments or users.  Here, 

we have shown a fundamental shift in speech/language 

characteristics due to the Lombard effect in CI users.  This 

change in speech production should be leveraged in new 

algorithm development and further applications of speech 

technology which are integrated for cochlear implant users. 
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