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ABSTRACT
Main-stream speech codecs are based on modelling the
speech source by a linear predictor. An efficient domain
for quantization and coding of this linear predictor is the line
spectral frequency representation, where the predictor is en-
coded into an ordered set of frequencies that correspond to the
roots of the corresponding line spectral polynomials. While
this representation is robust in terms of quantization, methods
available for finding the line spectral frequencies are com-
putationally complex. In this work, we present a method for
finding these frequencies using the FFT, including methods
for limiting numerical range in fixed-point implementations.
Our experiments show that, in comparison to a zero-crossing
search in the Chebyshev domain, the proposed method re-
duces complexity and improves robustness, while retaining
accuracy.

Index Terms— speech coding, line spectral frequencies,
linear prediction, root finding

1. INTRODUCTION

The most frequently used paradigm in speech coding is Al-
gebraic Code Excited Linear Prediction (ACELP), which is
used in standards such as the AMR-family, G.718 and MPEG
USAC [1–3] as well as the recent 3GPP Enhanced Voice Ser-
vices standard [4]. It is based on modelling speech using a
source model, consisting of a linear predictor (LP) to model
the spectral envelope, a long time predictor (LTP) to model
the fundamental frequency and an algebraic codebook to rep-
resent the residual.

The coefficients of the linear predictive model are very
sensitive to quantization, whereby they are usually first
transformed to Line Spectral Frequencies (LSFs) or Immit-
tance Spectral Frequencies (ISFs) before quantization. The
LSF/ISF domains are relatively robust to quantization errors
and the stability of the predictor can, in these domains, be
readily preserved, whereby it offers a suitable domain for
quantization [5–7].

The line spectral frequency representation is based on
a linear transformation of the linear predictor into a pair of
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polynomials, known as the line spectrum pair polynomials,
which have their roots on the unit circle, whereby their lo-
cations can be described by their angles or frequencies only.
Hence, the roots of the line spectrum pair polynomials are
known as the line spectral frequencies of the corresponding
predictor [7].

While the representation is in itself robust and gives con-
trol of both the stability and, to some extent, perceptual fea-
tures of the predictor [8], finding the line spectral frequencies
is a non-trivial task. It is essentially a polynomial root-finding
problem, for which no analytic solution exists when the order
of the polynomial is in the conventional range.

An early approach by Kang [9] for finding the line spectral
frequencies was based on evaluating the spectral magnitude of
the spectrum with the FFT. Since the roots of the two polyno-
mials are on the unit circle, they will appear as valleys in the
magnitude spectrum. By searching for valleys of the power
or magnitude spectrum, we can thus locate all the roots, pro-
vided that the spectrum is sampled with a sufficiently high
accuracy such that all valleys are visible. A benefit of this
approach is that it is simple and it applies the FFT, which is
known to be both fast and numerically stable.

The approach of Kang does not, however, take benefit of
the fact that the line spectral polynomials are symmetric and
antisymmetric, respectively, and that they have real-valued
coefficients, whereby their roots appear in complex-conjugate
pairs. An approach by Kabal [10] applies the Chebyshev
transform on the line spectral polynomials, to simultaneously
remove these redundancies and project complex conjugate
roots onto the real axis. Since the transformed polynomi-
als are half the order and their roots are on the real axis,
we can estimate their locations with a simple zero-crossing
search. This approach is applied for example in AMR and
G.718 [1, 2].

The benefit of the approach of Kabal is the reduction in
the order of the polynomial, which reduces complexity, but
unfortunately the Chebyshev transform concurrently also pro-
hibits the use of the FFT. In addition, since we can read-
ily show that the Chebyshev transform is not an orthonormal
transform, for higher order polynomials (m > 32), the nu-
merical accuracy rapidly degrades. The approach can there-
fore not be applied on higher-order polynomials.
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In this work, we present a method similar to Yedlapalli’s
method [11], which applies a zero-crossing search in the
Fourier spectrum, whereby we can take advantage of the
efficient FFT algorithm, while simultaneously retaining the
accuracy of Kabal’s approach (see Section 2 for details).
While Yedlapalli’s method requires high numerical accu-
racy [11], we apply a pre-processing step in Section 3 which
limits numerical range of spectral coefficients. It follows that
the computational complexity of a fixed-point implementa-
tion is reduced. Our experiments in Section 4 show that the
the proposed method has a significantly lower computational
complexity and improved accuracy in comparison to G.718.

2. ROOT SEARCH IN THE SPECTRAL DOMAIN

Given the Z-transform of a linear predictive model A(z) =∑m
k=0 akz

−k of order m, the line spectral polynomials are
defined as [7]{

P (z) = A(z) + z−m−lA(z−1)

Q(z) = A(z)− z−m−lA(z−1).
(1)

With l = 1 and l = 0 we obtain the line and immittance spec-
tral pair polynomials, respectively. The original polynomial
A(z) can be reconstructed by A(z) = 1

2 [P (z) +Q(z)].
Given thatA(z) is minimum-phase, the polynomials P (z)

and Q(z) will have their roots interlaced on the unit circle. In
addition, from [12] we know that the roots are separated by a
positive margin.

The polynomials P (z) and Q(z) are symmetric and
antisymmetric, respectively, with the axis of symmetry at
z−(m+l)/2. It follows that the spectra of z−(m+l)/2P (z)
and z−(m+l)/2Q(z), respectively, evaluated on the unit circle
z = exp(iθ) are real and complex valued. Since the zeros
are on the unit circle, we can find them by searching for zero-
crossings. Moreover, the evaluation on the unit-circle can be
implemented efficiently using an FFT.

As the spectra corresponding to z−(m+l)/2P (z) and
z−(m+l)/2Q(z) are real and complex, respectively, we can
implement them with a single FFT. Specifically, if we take
the sum z−(m+l)/2 (P (z) +Q(z)) then the real and com-
plex parts of the spectra correspond to z−(m+l)/2P (z) and
z−(m+l)/2Q(z), respectively. Moreover, since

z−(m+l)/2 (P (z) +Q(z)) = 2z−(m+l)/2A(z), (2)

we can directly take the FFT of 2z−(m+l)/2A(z) to obtain the
spectra corresponding to z−(m+l)/2P (z) and z−(m+l)/2Q(z),
without explicitly determining P (z) and Q(z). Since we are
interested only in the locations of zeros, we can omit scalar
multiplication and evaluate z−(m+l)/2A(z) by FFT instead.
Observe that sinceA(z) has onlym+1 non-zero coefficients,
we can use FFT pruning to reduce complexity [13].

To ensure that all roots are found, we must use an FFT of
sufficiently high length N that the spectrum is evaluated on
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Fig. 1. Illustration of the real and complex parts of
z−(m+l)/2A(z). The vertical dashed lines depict the line
spectral frequencies.

at least one frequency between every two zeros. In compari-
son to evaluating the magnitudes |P (z)| and |Q(z)|, the zero-
crossing approach has a significant advantage in accuracy.
Consider, for example, the sequence 3, 2, −1, −2. With the
zero-crossing approach it is obvious that the zero lies between
2 and −1. However, by studying the corresponding magni-
tude sequence 3, 2, 1, 2, we can only conclude that the zero
lies somewhere between the second and the last elements. In
other words, with the zero-crossing approach the accuracy is
double in comparison to the magnitude-based approach.

Figure 1 illustrates the relation of A(z), P (z) and Q(z).
Note that the magnitude is expressed on a linear axis rather
than on the decibel scale in order to keep zero-crossings vis-
ible. We can see that the line spectral frequencies occur at
the zeros crossings of P (z) and Q(z). Moreover, the magni-
tudes of P (z) and Q(z) are smaller than or equal to 2|A(z)|
everywhere;

|P (eiθ)| ≤ 2|A(eiθ)| and |Q(eiθ)| ≤ 2|A(eiθ)|. (3)

The equality occurs only at the line spectral frequencies. This
relationship can be readily derived using Eq. 1 and a continu-
ity argument.

In summary, given a linear predictor with coefficients ak,
we can obtain the line spectral frequencies by applying the
FFT of length N on the zero-extended sequence ak and by
first applying the phase-rotation z(m+l)/2 and then searching
for zero-crossings of the real and complex parts. Since the ze-
ros of P (z) andQ(z) are interlaced, we can alternate between
searching for zeros on the real and complex parts, such that
we find all zeros in one pass, and reduce complexity by half
in comparison to a full search. Further, to refine the locations
of zeros, we can apply interpolation in the neighborhood of
the zeros.

5123



3. FIXED POINT IMPLEMENTATION

Speech codecs are often implemented on mobile devices with
limited resources, whereby numerical operations must be im-
plemented with fixed-point representations. It is therefore es-
sential that algorithms implemented operate with numerical
representations whose range is limited. For common speech
spectral envelopes, the numerical range of the Fourier spec-
trum is, however, so large that we need a 32-bit implementa-
tion of the FFT to ensure that the location of zero-crossings
are retained.

A 16-bit FFT can, on the other hand, often be imple-
mented with lower complexity, whereby it would be bene-
ficial to limit the range of spectral values to fit within that
16-bit range. Our approach is based on pre-conditioning the
spectrum of A(z) with a stabilizing filter B(z). From Eq. 3
we see that by limiting the numerical range of B(z)A(z) we
also limit the numerical range of B(z)P (z) and B(z)Q(z).
If B(z) does not have zeros on the unit circle, then B(z)P (z)
and B(z)Q(z) will have the same zero-crossing on the unit
circle as P (z) andQ(z). Moreover,B(z) has to be symmetric
such that z−(m+l+n)/2P (z)B(z) and z−(m+l+n)/2Q(z)B(z)
remain symmetric and antisymmetric and their spectra are
purely real and imaginary, respectively. Instead of evalu-
ating the spectrum of z(m+l)/2A(z) we can thus evaluate
z(m+l+n)/2A(z)B(z), where B(z) is an order n symmetric
polynomial without roots on the unit circle. In other words,
we can apply the same approach as in Section 2, but first
multiplying A(z) with filter B(z) and applying a modified
phase-shift z−(m+l+n)/2.

The remaining task is to design a filter B(z) such that the
numerical range of A(z)B(z) is limited, with the restriction
that B(z) must be symmetric and without roots on the unit
circle. The simplest filter which fulfills the requirements is an
order 2 linear-phase filter

B1(z) = β0 + β1z
−1 + β0z

−2 (4)

where βk ∈ R are the parameters and |β1| > 2|β0|. By ad-
justing βk we can modify the spectral tilt and thus reduce the
numerical range of the product A(z)B1(z). A computation-
ally very efficient approach is to choose βk such that the mag-
nitude at 0-frequency and Nyquist is equal, |A(1)B1(1)| =
|A(−1)B1(−1)|, whereby we can choose for example

β0 = A(1)−A(−1) and β1 = 2 (A(1) +A(−1)) . (5)

This approach provides an approximately flat spectrum. Fig-
ure 2 illustrates the performance.

We observe that whereas A(z) has a high-pass character,
B1(z) is low-pass, whereby the product A(z)B1(z) has, as
expected, equal magnitude at 0- and the Nyquist-frequency
and it is more or less flat. Since B1(z) has only one degree of
freedom, we obviously cannot expect that the product would
be completely flat. Still, observe that the ratio between the
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Fig. 2. Illustration of the magnitude spectrum of a filter
A(z), the corresponding flattening filters B1(z) and B2(z)
and the products A(z)B1(z) and A(z)B2(z), where the solid
and dash-dotted lines correspond to B1(z) and B2(z) re-
spectively. The horizontal dotted line shows the level of
A(z)B1(z) at the 0- and Nyquist-frequencies.

highest peak and lowest valley of B1(z)A(z) is much smaller
than that of A(z). This means that we have obtained the
desired effect; the numerical range of B1(z)A(z) is much
smaller than that of A(z).

A second, slightly more complex method is to calculate
the autocorrelation rk of the impulse response of A(0.5z).
Here multiplication by 0.5 moves the zeros of A(z) in the di-
rection of origin, whereby the spectral magnitude is reduced
approximately by half. By applying the Levinson-Durbin on
the autocorrelation rk, we obtain a filter H(z) of order n
that is minimum-phase [14]. We can then define the order
2n filter B2(z) = z−nH(z)H(z−1) to obtain a |B2(z)A(z)|
that is approximately constant. This filter is illustrated in
Fig. 2 with the dash-dotted lines. We can see that the range of
|B2(z)A(z)| is smaller than that of |B1(z)A(z)|.

Further approaches for the design of B(z) can be readily
found in classical literature of FIR design [15].

4. EXPERIMENTS

To verify the performance of the proposed algorithm, we per-
formed two experiments; First, we estimated the number of
bits required for the numerical representation of the spectra
as well as the accuracy of the obtained line spectral frequen-
cies. Second, we measured the computational complexity in
a fully featured speech codec.

As data for all our experiments we used the set of speech,
audio and mixed sound samples used in evaluation of the
MPEG USAC standard [16] with a sampling rate of 12.8 kHz.
The audio samples were windowed with Hamming windows
of length 30 ms and pre-filtered with 1− 0.68z−1.

In the first experiment, our purpose was to determine
whether the method presented in Section 3 is sufficient to
reduce the numerical range of the spectrum to allow usage
a 16-bit implementation of the FFT. The required numerical
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Fig. 3. Histograms of the number of required bits to represent
the magnitude spectra of A(z) and A(z)B(z), respectively.
The horizontal dashed lines illustrate the range of values.

Method Mean square error
N = 200 N = 256

Chebyshev 2.51× 10−8 0.91× 10−8

FFT A(z) 2.70× 10−8 1.38× 10−8

FFT A(z)B1(z) 2.75× 10−8 1.39× 10−8

FFT A(z)B2(z) 1.77× 10−8 1.03× 10−8

Table 1. Accuracy of line spectral frequencies with different
methods and different numbers of evaluation points N .

range of the spectrum can be estimated by taking the log2-
ratio of the highest peak and lowest valley of the spectrum,
that is, for a filter C(z), the required bits can be estimated by

b = log2
maxθ |C(exp(iθ))|
minθ |C(exp(iθ))|

. (6)

For each frame of the test material, we calculated the required
number of bits for the original linear predictive model A(z)
and the stabilized spectra A(z)B1(z) and A(z)B2(z), where
B1(z) and B2(z) are defined as in Section 3 and B2(z) is of
order 2m, wherem = 16 is the order ofA(z). The histograms
of both approaches are depicted in Figure 3.

We can see that for the linear predictor A(z), we need
a fixed point representation with an accuracy up to 23 bits,
whereas A(z)B1(z) and A(z)B2(z) can be represented with
12 and 10 bits, respectively. In other words, by convolv-
ing A(z) with B1(z) or B2(z), the maximal numerical range
of the spectrum is reduced from 23 to 12 or 10 bits. This
successfully demonstrates that for A(z) a 32-bit implemen-
tation of the FFT is required, while 16-bits is sufficient for
both A(z)B1(z) and A(z)B2(z). Since the simple and low-
complexity approach to stabilization of B1(z) is adequate for
the current application, a study of more refined approaches
was not necessary.

The algorithmB1(z) was then implemented in a full-scale
speech codec, a working draft version of the 3GPP Enhanced
Voice Services standard, where the order of A(z) is m = 16.
The proposed method was implemented in C, with an FFT
length of N = 256. As comparison, we included the search
algorithm of the G.718 standard [2]. It uses a zero-crossing

Approach Complexity (WMOPS)
min max mean

G.718 0.698 0.758 0.735
Proposed 0.352 0.393 0.377

Table 2. Computational complexity of the line spectrum fre-
quency search in G.718 and the proposed approach, measured
by Weighted Million Operations per Second (WMOPS).

search in the Chebyshev-domain on a grid of 100 points. This
corresponds to an FFT of length 200, since the FFT includes
aliased components above the Nyquist frequency. The accu-
racy of Chebyshev and the proposed methods are listed in Ta-
ble 1. As a reference value for measuring root accuracy we
used the root locations calculated by the MATLAB function
roots(). We can see that we can reach higher accuracy
than Chebyshev with N = 200 by selecting either the FFT
method with A(z)B2(z) with N = 200 or any of the FFT
methods with N = 256. SinceB1(z) is very simple to imple-
ment, is more accurate at N = 256 than the standard Cheby-
shev at N = 200, we chose to apply this method in the EVS
standard.

The computational complexity of the G.718 and the pro-
posed method based on FFT with A(z)B1(z) and N = 256
are listed in Table 2 as measured by Weighted Million Op-
erations per Second (WMOPS) [17]. Most importantly, the
maxima of observed WMOPS values are for G.718 and the
proposed method 0.758 and 0.393, respectively. We have thus
obtained a 48% reduction in computational complexity.

5. DISCUSSION

We present a method for finding the line spectral frequen-
cies of linear predictors, which is applicable to speech codecs
for mobile devices, such as the recent 3GPP Enhanced Voice
Services standard [4]. The proposed method can be applied
with higher accuracy than conventional methods, such as the
search applied in G.718, while simultaneously reducing com-
putational complexity by 48%.

Conventional methods are usually based on the Cheby-
shev transform, which is not orthonormal, whereby the nu-
merical accuracy rapidly decreases with an increase in the
model order. Since the proposed method is based on the
Fourier transform, which is orthonormal, it can readily be ap-
plied also to higher-order predictors. The proposed method
is thus applicable also to the problem of estimating the basis
frequencies of Vandermonde transforms [18, 19].

In summary, the proposed method is widely applicable for
finding line spectral frequencies, especially in speech coding.
It has already been adopted to the 3GPP Enhanced Voice Ser-
vices standard [4].
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