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ABSTRACT

Significant improvements in intelligibility of speech in noise
can be obtained by modifying the speech signal in the time
and/or frequency domains. However, most speech intelli-
gibility enhancement algorithms are designed to use clean
speech as an input, and their performance suffers once the
input speech signal-to-noise ratio decreases, a common case
in face-to-face communication environments such as restau-
rants or cafés. In this work we investigate whether a particu-
larly successful speech intelligibility enhancement system—
spectral shaping and dynamic range compression—and var-
ious front-end noise reduction methods might be suitable
in such environments. Our evaluations suggest that such a
complete system would provide an increase in speech intel-
ligibility equivalent to a gain of 10 dB input signal-to-noise
ratio in the more challenging face-to-face communication
environments.

Index Terms— speech intelligibility, speech enhance-
ment, noise reduction, face-to-face communication.

1. INTRODUCTION

Hearing and understanding speech is an extremely important
part of a person’s ability to communicate with others. As the
background noise increases it gets harder and harder to make
out the content of the speech of interest. This is true for a
person with normal hearing, but even more so for a hearing
impaired person.

In order to combat this, many signal processing algo-
rithms have been developed to increase the intelligibility of
speech in noise (see [1] and the references within). One
of these algorithms—spectral shaping and dynamic range
compression (SSDRC) [2]—has been shown to be a state-of-
the-art method to improve speech intelligibility [1].

However, most speech intelligibility enhancement algo-
rithms are designed to use clean speech as an input, and their

performance suffers once the input speech signal-to-noise ra-
tio decreases, a common case in face-to-face communication
environments such as restaurants or cafés. SSDRC is not
immune to this effect, and suffers similarly when the back-
ground noise increases.

A potential solution to this may be to pre-process the
noisy speech signal to reduce the noise before passing it to
SSDRC. Speech enhancement in the presence of noise is an
area that has been investigated for many decades [3–5]. The
great majority of these methods analyze the speech signal in
the frequency domain, and process the amplitude spectrum,
ignoring the phase. Much more recently, methods have been
developed to include the phase in this processing, providing
very encouraging results [6–10].

In this paper, we develop a face-to-face communication
system that uses the phase-aware methods of [6–10] as a pre-
processing input stage to SSDRC, increasing the signal-to-
noise ratio (SNR) of the speech passed to SSDRC. Our sys-
tem can then accept noisy speech as an input, and output a
modified speech signal that has greatly enhanced intelligibil-
ity.

2. SSDRC

Spectral shaping and dynamic range compression (SSDRC)
[2] has been shown to be an excellent method to improve
speech intelligibility [1]. The spectral shaping operates in
the frequency domain, and the dynamic range compression
(DRC) operates primarily in the time domain. The spectral
shaping consists of two cascaded subsystems which are adap-
tive to the probability of voicing: (i) an adaptive sharpening
where the formant information is enhanced, and (ii) an adap-
tive pre-emphasis filter. Furthermore, a third fixed spectral
shaping is used to prevent attenuation of high frequencies in
the speech signal during signal reproduction.

The output of the spectral shaping system is then input
to the DRC, which has a dynamic and a static stage. During
the dynamic stage, the envelope of the total time signal is dy-
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Fig. 1. The noise reduction subsystem.

namically compressed with a 2 ms release time constant and
almost instantaneous attack time constant. During the static
amplitude compression, an input-output envelope characteris-
tic (IOEC) is applied to the dynamically compressed envelope
converted to dB. The 0 dB reference level is set to 0.3 times
the peak of the signal envelope. Thus, DRC enhances the
transient components of speech.

There is a final stage in SSDRC that ensures the input
power and the output power are the same, this guarantees that
the gains in intelligibility are not due to signal amplification.

3. PROPOSED SYSTEM

As SSDRC was designed to operate on clean speech, any
noise on the input speech signal will be treated as if it was part
of the speech, leading to unwanted masking of the speech, and
reduced intelligibility. In order to combat this loss in intelli-
gibility, we propose the use of a preprocessing input stage to
reduce the noise, effectively increasing input speech’s SNR.
Although this type of processing is often referred to in the
literature as speech enhancement, here we will refer to it as
noise reduction to differentiate it from the speech enhance-
ment of the following SSDRC stage.

3.1. Noise Reduction

Most noise reduction methods operate only on the amplitude
spectrum of the noisy speech, and ignore the phase. Perhaps
the most classic example of this is the Wiener filter [3], which
provides a minimum mean square error (MMSE) estimate of
the amplitude spectrum of the speech signal.

After the appropriate sampling and conversion to the
Fourier domain, we can write the contents of the k-th bin of
the l-th frame of the noisy speech signal as

Yk,l = Sk,l +Nk,l, (1)

where Sk,l andNk,l are the speech and noise in the k-th bin of
the l-th frame, respectively. The softmask gain of the Wiener

filter can then be given as

Gk,l =

∣∣Ŝk,l

∣∣2∣∣Ŝk,l

∣∣2 + ∣∣N̂k,l

∣∣2 , (2)

where the estimate of the magnitude of the speech signal∣∣Ŝk,l

∣∣ is often found by recursion, and the estimate of the
magnitude of the noise power spectral density (PSD)

∣∣N̂k,l

∣∣2
may be found by methods such as [11] or [12]. Once Gk,l has
been calculated, the speech estimate is given by

Ŝk,l = Gk,l |Yk,l| exp
(
iφYk,l

)
, (3)

where φYk,l
is the phase of the Fourier domain noisy speech

signal, given by

φYk,l
= 6 Yk,l. (4)

An obvious next step is to consider accurately estimat-
ing the phase of the speech signal, but until recently this had
proved elusive. However, recently work in [6] proposed an
effective method to estimate this phase φ̂Sk,l

, based on geom-
etry and group delay minimization. An improved estimate of
the speech signal can then be formed as

Ŝ′
k,l = Gk,l |Yk,l| exp

(
iφ̂Sk,l

)
. (5)

Other work in [8] and [10] then uses the initial estimate
of the magnitude of the speech signal

∣∣Ŝk,l

∣∣ and the estimate
of the phase of the speech signal φ̂Sk,l

to produce a phase −
aware estimate of the magnitude of the speech signal

∣∣Ŝ′
k,l

∣∣.
This can then be used in another Wiener filter to produce a
phase-aware softmask gain as

G′
k,l =

∣∣Ŝ′
k,l

∣∣2∣∣Ŝ′
k,l

∣∣2 + ∣∣N̂k,l

∣∣2 . (6)

Finally, similar to (3) and (5), the estimated speech signal is
given by

Ŝ′′
k,l = G′

k,l |Yk,l| exp
(

iφ̂Sk,l

)
. (7)
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Fig. 2. The proposed system, noise-tolerant SSDRC.

The full noise reduction system is illustrated in Fig. 1. The
noisy speech signal Yk,l is first fed into a Noise PSD Esti-
mation block which produces an estimate of the noise PSD∣∣N̂k,l

∣∣2, which is used by most of the other blocks. The first
Wiener filter then produces an initial estimate of the ampli-
tude of the speech signal

∣∣Ŝk,l

∣∣, and this is used to generate an
estimate of the phase of the speech signal φ̂Sk,l

. The Phase-
aware Amplitude Estimation block then uses φ̂Sk,l

to produce
an improved estimate of the amplitude of the speech signal∣∣Ŝ′

k,l

∣∣, which is further refined by the second Wiener filter to
produce

∣∣Ŝ′′
k,l

∣∣. This is then combined with φ̂Sk,l
to produce

the final estimate of the speech signal.

3.2. Modification of SSDRC

After initial testing, it became apparent that the part of SS-
DRC that was the most sensitive to noise on the input speech
was the DRC. This is because the DRC is intended to trans-
fer energy over time from louder speech segments (such as
voiced speech) to quieter (often unvoiced) parts of the speech
signal, resulting in short passages of noise being amplified
and consequently, reduced intelligibility. The solution we
pursued was a modification of the IOEC curve [2]. Essen-
tially this results in a change to the threshold of silence of the
IOEC curve based on the input SNR γ. Let the threshold of
silence be denoted ξ. In the clean speech scenario, γ = ∞,
and ξ = −30 dB. We then vary ξ as:

ξ =


0 dB, if γ ≤ 0 dB
−γ, if 0 dB < γ ≤ 30 dB
−30 dB, if γ > 30 dB

. (8)

3.3. Noise-tolerant SSDRC

The final proposed system which we refer to as noise-tolerant
SSDRC (ntSSDRC), is shown in Fig. 2. The noisy input
speech is fed into the noise reduction subsystem described in
Section 3.1 and Fig. 1, output of this is then processed by the
spectral shaper which enhances the frequency characteristics
of the speech. This output is then modified in the time domain
by the DRC stage with the input SNR-dependent modifica-
tion of Section 3.2. Finally, the energy of the output signal is
constrained to be the same as that at the input to the spectral
shaper.

4. DISCUSSION

The final goal of this work was of course improved speech
intelligibility—itself a very subjective measurement—and
the proposed system of Figures 1 and 2 is obviously highly
non-linear. Furthermore, speech intelligibility is somewhat
both speech sample- and speaker-dependent. Thus, all the
evaluations in this work were done on 5 different speakers
(three males, two females) each saying 5 different sentences,
for a total of 25 different samples. The clean speech was
recorded at 16 kHz, to which the appropriately scaled speech-
shaped noise was added. The extended speech intelligibility
index (ESII) [13] was used as the final performance indica-
tor. Nonetheless, the perceptual evaluation of speech quality
(PESQ) [14] was used at intermediate stages to help tune and
test the system, as well as informal intelligibility listening
tests.

The overall effect of each subsystem in a system like this
is hard to predict, so changes have to be carefully considered.
Indeed, optimizing each block in the whole system indepen-
dently will almost certainly not result in the best overall per-
formance. So each block’s changes had to be checked against
its impact on the overall performance.

When it came to choosing parameters for the noise re-
duction subsystem, there was a delicate balance to be main-
tained between eliminating as much of the noise in the pauses
between speech as possible, and minimizing speech distor-
tion. For instance, for the noise PSD estimation we chose
to use [12] over [11] as the latter had a tendency to underesti-
mate the noise, which in turn reduced the amount of noise that
was removed from the noisy speech signal. The majority of
performance improvement in ESII can be obtained by using
the output of the first Wiener filter to generate an estimate of
the speech signal as in (3). The remaining blocks of the noise
reduction system further improve the ESII, but at significant
computational cost. In particular, the Phase Estimation is ex-
tremely computationally intensive.

We also investigated the possibility of smoothing the gain
of the final Wiener filter in the cepstral domain following the
work of [15]. Although this did decrease the so-called “mu-
sical noise” in the output of the noise reduction subsystem, it
also affected the speech in such a way that the final output of
the ntSSDRC system had a worse ESII, and we chose not to
use it.
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Fig. 4. Extended Speech Intelligibility Index for various input SNRs and types of processing. The dashed red lines are always
SSDRC applied to clean speech. The other lines have the specified input SNR. The solid green lines with stars are ntSSDRC
applied to noisy speech, the blue dashed lines with circles are SSDRC applied to noisy speech, and the dashed magenta lines
with triangles are plain noisy speech.
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Fig. 3. Extended speech intelligibility index between plain
and SSDRC speech for differing levels of input SNR (γ).

The modifications to DRC are promising but further in-
vestigation is required here to integrate them properly with
the noise reduction. This due to the fact that the characteris-
tics of the noise change significantly after the noise reduction
block.

5. RESULTS

5.1. Performance

We first present the results that were the motivation for this
work, a demonstration of how the ESII of SSDRC speech de-
teriorates as the input speech SNR γ decreases. This is clearly
shown in Fig. 3. In particular, the losses at γ = 0 dB and
γ = 10 dB are significant.

The performance of ntSSDRC is shown in Fig. 4, where it
is clear that the use of the noise reduction subsystem of ntSS-

DRC allows it to regain some of the lost performance due to
noisy input speech. The gains in intelligibility are greatest
at the lower input SNR values, especially at 0 dB where it is
most needed. Overall, it is evident that the use of ntSSDRC
provides the same ESII as SSDRC with an input SNR 10 dB
higher. Thus we claim that ntSSDRC should provide a 10 dB
gain in intelligibility. Fig. 4 also highlights the gains of ntSS-
DRC over plain noisy speech.

5.2. Computational Complexity

A secondary goal of this work was the development of a
working face-to-face communication system. In order to
test its real-time performance, the proposed system was im-
plemented in C++, on a Windows 8 laptop with a Core i7
processor running at 2.4 GHz. With input and output sound-
card frame sizes of 424 samples at 44.1 kHz, less than 20%
of the available processing time between audio interrupts was
needed to perform the processing of the proposed system,
confirming its suitability as a real-time system. Note that the
majority (over half) of the processing time is taken by the
phase estimation algorithm of the noise reduction subsystem.

6. CONCLUSIONS

We have presented the first work that considers combining
state-of-the-art noise reduction algorithms with state-of-the-
art speech intelligibility enhancement techniques to provide
a face-to-face communication system designed to work in a
significantly noisy environment. In particular, our system is
suitable for real-time application, and our evaluations are very
encouraging, suggesting that our system will provide a 10 dB
gain in intelligibility over a baseline system without noise re-
duction. Our next step will be to perform extensive speech
intelligibility listening tests.
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