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ABSTRACT

Despite recent advancements in digital signal process-
ing technology for cochlear implant (CI) devices, there still
remains a significant gap between speech identification per-
formance of CI users in reverberation compared to that in
anechoic quiet conditions. Alternatively, automatic speech
recognition (ASR) systems have seen significant improve-
ments in recent years resulting in robust speech recognition
in a variety of adverse environments, including reverbera-
tion. In this study, we exploit advancements seen in ASR
technology for alternative formulated solutions to benefit CI
users. Specifically, an ASR system is developed using multi-
condition training on speech data with different reverberation
characteristics (e.g., T60 values), resulting in low word error
rates (WER) in reverberant conditions. A speech synthesizer
is then utilized to generate speech waveforms from the output
of the ASR system, from which the synthesized speech is
presented to CI listeners. The effectiveness of this hybrid
recognition-synthesis CI strategy is evaluated under moder-
ate to highly reverberant conditions (i.e., T60 = 0.3, 0.6, 0.8,
and 1.0s) using speech material extracted from the TIMIT
corpus. Experimental results confirm the effectiveness of
multi-condition training on performance of the ASR system
in reverberation, which consequently results in substantial
speech intelligibility gains for CI users in reverberant envi-
ronments.

Index Terms— Automatic speech recognition, cochlear
implants, multi-condition training, reverberation

1. INTRODUCTION

Although hearing is restored in profoundly deafened individ-
uals by the aid of the cochlear implants (CI), they still en-
counter speech perception difficulties in challenging listen-
ing environments where a background masker is present (e.g.
noise and/or reverberation) [1, 2]. Advancements in digital
signal processing have resulted in improvements in speech
understanding for CI users in the presence of noise and/or
reverberation [1, 3–12], in the forms of modified speech cod-
ing strategies or front-end signal enhancement [5,10]. Despite

the effectiveness of these techniques for improving the quality
and/or intelligibility of speech in the presence of noise and/or
reverberation, there still exists a large gap between perfor-
mance of CI recipients in an anechoic quiet environment and
in noisy and/or reverberant environments.

On the other hand, the performance of automatic speech
recognition (ASR) systems drop substantially in mismatched
train and test conditions where the system is only trained
with the anechoic neutrally spoken clean speech, but tested
on speech masked with noise and/or reverberation or spo-
ken in a different mode [13–15]. Several techniques have
been proposed to reduce word error rate (WER) of ASR sys-
tems in mismatched conditions where reverberation or noise
exists [13, 14].

Taking into account both WER improvements in ASR sys-
tems under adverse environments, and also the ineffectiveness
of the few proposed signal processing strategies in highly re-
verberant environments, here advancements in ASR systems
are exploited in favor of CI listeners in moderate to highly
reverberant conditions.

In this study, ASR systems are trained with anechoic clean
speech, as well as different amounts of speech in the pres-
ence of reverberation. The output of the ASR engine tested
in various reverberant conditions is then submitted to a text-
to-speech (TTS) system, and the synthesized speech is then
presented to the CI listeners. In order to evaluate the effec-
tiveness of this recognition-synthesis strategy on speech un-
derstanding of CI users, four moderate to highly reverberant
conditions (T60 = 0.3, 0.6, 0.8, and 1.0s) are considered using
the TIMIT speech corpus.

2. SYSTEM DESCRIPTION

The block diagram of the proposed hybrid recognition-
synthesis strategy is shown in Fig.1. In the training stage,
the speech recognizer is trained using anechoic, as well as a
subset of the reverberant training speech. In the test stage, the
ASR system output text transcription is submitted through
a TTS synthesizer. Finally, the synthesized waveform is
presented to the CI listener to evaluate speech intelligibility.
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Fig. 1. Block diagram of the proposed hybrid strategy.

The state-of-the-art speech recognition toolkit, Kaldi [16],
was used to train acoustic models and to decode test data.
The trained model for each triphone is a three-state left-to-
right HMM. A gender independent speech recognizer was
trained on 3.5 hours of audio from the anechoic clean TIMIT
database, and a portion of the reverberant version of TIMIT
depending on the experiment, using Kaldi s5 recipe [16].
The forced alignments were generated using Linear Dis-
criminate Analysis (LDA) [17] with Maximum Likelihood
Linear Transform (MMLT) [18] to reduce the dimensional-
ity. Finally, a global Feature space Maximum Likelihood
Linear Regression (fMLLR) [19] was applied to normal-
ize inter-speaker variability. 39-dimensional Mel Frequency
Cepstral Coefficients (MFCC) [20] feature vectors were used,
consisting of 13 statistic features along with their delta and
acceleration coefficients. These features were extracted using
25ms speech frames with a 10ms frame shift between suc-
cessive frames for 16kHz speech signals, using Kaldi toolkit.
In all experiments, Cepstral Mean Normalization (CMN) was
applied in an effort to minimize channel distortion. A trigram
language model was used in the decoder. All experiments
were carried out on an open speaker test set. An off-the-shelf
TTS system was used to synthesize speech waveforms.

3. EXPERIMENTS

Performance of the proposed hybrid speech enhancement sys-
tem is evaluated in the context of speech intelligibility for CI
users, as well as WER of the ASR engine. For both ASR sys-
tem assessment and CI intelligibility tests, speech data from
TIMIT [21] was used. Training and test sets of the TIMIT
database include 4158 train sentences (326 male and 136 fe-
male speakers) and 1512 test sentences (112 male and 56 fe-
male speakers), from different speakers with no overlap be-
tween training and test sentences.

For the speech synthesizer phase, a text-to-speech system
was used to generate audio speech files at 16kHz sampling
rate with two default speakers from a Windows-8 machine,

“Microsoft David” as male speaker, and “Microsoft Zira” as
female speaker (English-United States).

Four room impulse responses (RIR) with reverberation
times equal to 0.3, 0.6, 0.8, and 1.0s were convolved with
the anechoic clean train and test sentences of the TIMIT
corpus in order to generate the reverberant data. The RIRs
were recorded in a 10.06m × 6.65m × 3.4m (length × width
× height) room [22] where reverberation time of the room
was gradually varied from 1.0s to 0.8, 0.6, and 0.3s by floor
carpeting and adding absorptive wall panels. The direct-to-
reverberant ratios (DRR) of the RIRs are 1.5, -1.8, -3.0, and
-0.5 corresponding to T60 = 0.3, 0.6, 0.8, and 1.0s, respec-
tively. The distance between the single-source signal and the
microphone is 5.5m, which is beyond the critical distance.

The ASR system is trained using the training set from
TIMIT in anechoic quiet, as well as different portions of the
reverberant TIMIT train corpus. All TIMIT test material was
used in the evaluation of the ASR system performance in ane-
choic quiet and four reverberant (T60 = 0.3, 0.6, 0.8, 1.0s)
conditions. For intelligibility listening tests, two types of sce-
narios were considered: (a) naturally spoken, and (b) synthe-
sized speech.

Four adult post-lingually deafened native speakers of
American English CI listeners were tested in anechoic quiet
and the four above mentioned reverberant conditions with
both naturally spoken and synthesized sentences. For the
set of naturally spoken sentences, in each condition twenty
sentences (10 spoken by a male and 10 by a female speaker)
were presented to the CI users. For the synthesized speech set
of tests, based on the WER of the ASR system at that specific
condition, twenty synthesized sentences (again 10 spoken by
a male and 10 by a female speaker) with the same WER were
selected and presented to the CI listeners. All listening tests
were conducted in a double-wall anechoic sound attenuat-
ing booth through a loud-speaker located in front of the CI
listener.

During the speech intelligibility tests, sentences were
each presented to the CI listener twice and the listener was
asked to repeated the words he/she could hear. The number
of correct words identified by the listener in each condition
was then divided by the total number of test words used in
that condition to compute the speech intelligibility score. The
order of the conditions and sentences presented to the CI
users was randomized across subjects.

4. RESULTS

The ASR results obtained in different multi-condition training
scenarios are shown as WERs in Table 1. In order to evalu-
ate the effect of various reverberant conditions used in multi-
condition training, in addition to the anechoic quiet train data,
different portions of reverberant training data (16%, 33%, and
100%) were also used in the speech recognizer training stage.
In the ASR performance evaluation phase, the WER for ane-
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Table 1. Effect of multi-condition training on the WER of the ASR system. R0.3, R0.6, R0.8, and R1.0 stand for reverberation time of T60 =
0.3, 0.6, 0.8, 1.0s used in training stage (in addition to the anechoic quiet data) and test stage. 16%, 33%, 100% represent the portion of the
reverberant training data used in each condition.

Word Error Rate (WER) in %

Test
Train

Clean
clean+(x%)R0.3 clean+(x%)R0.6 clean+(x%)R0.8 clean+(x%)R1.0

16% 33% 100% 16% 33% 100% 16% 33% 100% 16% 33% 100%
Clean 0.9 0.8 0.7 0.8 0.9 0.7 0.7 0.6 0.8 0.8 0.6 0.7 0.9

R0.3 4.2 0.8 0.6 0.6 0.8 0.6 0.6 1.1 0.9 0.9 1.2 0.8 0.9

R0.6 32.5 3.8 2.2 1.2 2.6 1.6 0.9 2.7 2 0.8 1.1 2.4 0.8

R0.8 55.2 12.0 6.7 3.2 6.4 3.8 1.5 6.2 3.2 1.6 9.8 3.9 1.9

R1.0 64.8 23.1 15.9 9.6 16.8 7.3 3.9 14.2 6.6 3.4 10.0 4.7 3.0

choic, as well as all four reverberant conditions (T60 = 0.3,
0.6, 0.8, and 1.0s) were computed. The second column (enti-
tled “clean”) in Table 1 shows ASR system performance when
no reverberation data has been used in the training phase (i.e.,
WERs range from 0.9% to 64.8%).

As seen from the table, adding more reverberant data in
the training phase, reduces WER in all reverberant condi-
tions, especially when reverberation increases (larger T60 val-
ues). For example, if we compare “clean” train WERs vs.
“clean+R0.3 (100%)” train WERs, we see that increasing the
amount of reverberant training data even in the lowest rever-
beration time tested here (T60 = 0.3s) decreases WERs from
4.2% to 0.6%, 32.5% to 1.2%, 55.2% to 3.2%, and 64.8%
to 9.6% in reverberant conditions with T60 = 0.3, 0.6, 0.8,
and 1.0s, respectively. Two clear trends are observed from
the data in Table 1: (1) as the amount of reverberant data
increases in the training phase, the WER reduces in all con-
ditions tested, and (2) adding the same amount of reverberant
data with larger T60 in the training stage results in greater
WER reduction in all conditions (e.g., WERs in T60 = 1.0s
reduced from 23.1% to 16.8%, 14.2% and 10% when only
16% of the reverberant data in T60 = 0.3, 0.6, 0.8, and 1.0s
was added in the training phase, respectively).

In order to evaluate the effect of the proposed hybrid
recognition-synthesis strategy on the intelligibility of the
speech, a model trained on R0.3 with 16% reverberant data
is tested against clean and four reverberant conditions, and
the synthesized speech output is presented to the CI listeners.
Subjective intelligibility scores from four CI listeners are pre-
sented in Fig.2. The CI users were also tested with naturally
spoken sentences in all 5 conditions (clean and reverberant
with T60 = 0.3, 0.6, 0.8, and 1.0s) for comparative purposes.
These results are presented in Fig. 2(b).

Evident from the results shown in Fig. 2(a), is that CI
users speech intelligibility scores (tested with the output of
the speech recognizer) were very close to the baseline ASR
performance in that condition. It is worth mentioning that
WERs in each condition were converted to accuracy scores
by excluding the effects of substitutions and insertions, and

only counting the number of words correctly recognized by
the ASR system. This is the reason why ASR accuracy scores
reported in Fig. 2(a) do not exactly match the WERs in the
third column of Table 1.

As seen in Fig. 2(b), speech intelligibility for CI listeners
drop significantly as reverberation time (T60) increases. The
average subjective speech intelligibility scores dropped from
an average of 62.04% to 23.63%, 14.37%, 11.54% and 4.38%
in anechoic clean, and T60 = 0.3, 0.6, 0.8, and 1.0s conditions,
respectively. These results although in line, are approximately
15% less than the results of a previous study with CI users [1].
This is due to the perplexity of the TIMIT database used here
compare to the IEEE [23] database used in [1], and also the
regional dialect of the speakers of TIMIT corpus (the speaker
of IEEE sentences has no specific dialects).

The average subjective intelligibility score in anechoic
quiet condition obtained from synthesized speech, Fig. 2(a),
is approximately 37% higher than that achieved from nat-
urally spoken sentences in the same anechoic clean condi-
tion. The following factors contributed to such differences
in scores at the same condition: 1) The synthesized speech
does not carry any specific regional dialect or accent. In con-
trast, the naturally spoken sentences of the TIMIT database
are collected from speakers with various regional dialects
which affect speech perception of CI listeners; 2) A low
speaking rate was used in the TTS in order to generate clear
speech. However, most speakers in the TIMIT corpus have a
faster speaking rate. Even taking these reasons into consid-
eration, the synthesized sentences from the proposed hybrid
recognition-synthesis systems are still significantly more in-
telligible than the naturally spoken sentences in all conditions.
Two valuable outcomes can be extracted from the results in
Fig. 2. First, using only the multi-condition training, the
performance of ASR systems can increase substantially un-
der reverberation. The reverberant data used in the training
phase of the speech recognizer acts as a model adaptation tool
which considers the effects of reverberation on phonemes in
the model training and therefore, results in lower WERs even
under higher reverberation. Second, removing the speaker
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related characteristics such as accent and dialect from the
spoken speech results in significantly greater intelligible
speech for hearing impaired listeners with CI devices.

Moreover, feedback from all four CI listeners tested with
synthesized speech indicated that none of them were able
to determine whether the speech was naturally produced or
artificially synthesized. This is promising in the sense that
large intelligibility benefits can be obtained with the aid of
this hybrid recognition-synthesis strategy in challenging lis-
tening conditions, where the context of spoken sentences is
of a much greater interest compared to the specific speech
characteristics of the speaker.

In both ASR and subjective experiments, using only
a small portion of the moderate reverberant data (T60 =
0.3s) leads to substantial improvements in ASR accuracy
and speech intelligibility, even in highly reverberant envi-
ronments. This can be easily used in favor of CI listeners
as many daily environments (e.g., office, classrooms, living
room) have a reverberation time of 0.2 to 0.3s. Therefore,
each CI user can easily access such reverberant data in or-
der to train the ASR system linked to her/his own device.
Moreover, today, due to large advancements in digital signal
processing, PDA based cochlear implant interfaces [24], as
well as the extensive use of smart phones, one can easily use a
speech recognizer in the implant or connect her/his implant to
the smart phone to leverage computing resources for speech
recognition.

5. CONCLUSION

This study has proposed a hybrid recognition-synthesis
cochlear implant (CI) strategy for reverberant speech in-
telligibility enhancement. Multi-condition training has been
shown to reduce WER of the speech recognizer under mod-
erate to highly reverberant (T60 = 0.3, 0.6, 0.8, and 1.0s)
conditions. Synthesized speech is then generated from the
output of the speech recognizer engine using a text-to-speech
(TTS) system. The effect of multi-condition training on
speech intelligibility for hearing impaired listeners is eval-
uated by presenting the output of the recognition-synthesis
system to CI listeners using data from TIMIT. The proposed
hybrid strategy resulted in significant speech intelligibility
gains under mismatched reverberant conditions for CI users.
Using only clean data with a small subset of moderate rever-
berant data (16% of the training corpus) for ASR training, CI
users were able to identify re-synthesized speech with over
70% accuracy in most reverberant conditions tested (T60 =
1.0s). This high speech intelligibility result was due to the
low WER of the recognizer trained with reverberation char-
acteristics, as well as excluding accent/dialect of the spoken
speech by the use of speech synthesizer. Speech identification
under reverberation is a very challenging task for CI users.
Therefore, due to low speech identification performance of
CI listeners under reverberation, development of signal pro-
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Fig. 2. Mean speech intelligibility scores of four CI users in
anechoic clean and reverberant (T60 = 0.3, 0.6, 0.8, and 1.0s)
conditions. Panel (a) represents the intelligibility scores of CI
listeners tested with synthesized speech from the recognition-
synthesis strategy (the WER results were also presented in
terms of ASR accuracy for comparative purposes). Panel (b)
demonstrates the intelligibility scores of CI listeners tested
with naturally spoken sentences in all conditions. Error bars
indicate standard deviations.

cessing strategies that improve intelligibility of reverberant
speech is of great importance. Incorporating a speech recog-
nizer trained with only about an hour of moderate reverberant
(T60 = 0.2-0.3s) data, which can be easily accessed in regular
rooms, and a simple speech synthesizer will provide a sub-
stantial speech intelligibility gain for CI users in moderate to
highly reverberant conditions.
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