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ABSTRACT
Nowadays supervised speech separation has drawn much at-
tention and shown great promise in the meantime. While
there has been a lot of success, existing algorithms perform
the task only in one preselected representative domain. In
this study, we propose to perform the task in two different
time-frequency domains simultaneously and cooperatively,
which can model the implicit correlations between different
representations of the same speech separation task. Besides,
many time-frequency (T-F) units are dominated by noise in
low signal-to-noise ratio (SNR) conditions, so more robust
features are obtained by stacking features of original mix-
tures with that extracted from separated speech of each deep
stacking network (DSN) block, which can be regarded as a
denoised version of the original features. Quantitative experi-
ments show that the proposed cross-domain cooperative deep
stacking network (DSN-CDC) has enhanced modeling capa-
bility as well as generalization ability, which outperforms a
previous algorithm based on standard deep neural networks.

Index Terms— Speech separation, cross-domain cooper-
ative structure, deep stacking network, deep neural network

1. INTRODUCTION

Speech separation has been drawing more and more attention
in speech processing society for years. Despite much progress
has been made, separating speech from background noise at
very low SNR is still very challenging, and traditional speech
enhancement methods encounter much difficulty in this sit-
uation especially in single-channel systems. Meanwhile, the
technique has wide applications in real life, such as robust
automatic speech recognition (ASR) and hearing aid design.
In this study, we focus on monaural speech separation from
non-speech background noise at low SNR.

Nowadays, speech separation has been formulated as a
supervised learning problem more frequently. With the popu-
larity of masking methods in speech separation and denoising
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systems, various discriminative models are trained to predict
a variety of ideal T-F masks that are treated as training tar-
gets [1, 2, 3]. Much efforts have been made in this field re-
cently. For example, in order to extract the most effective
features from the original mixtures, the performances of a va-
riety of features were investigated [4, 5]. There are time and
frequency correlations of T-F bins in any T-F representation
of speech signals, so mask values of all the frequency bands
of a frame are usually predicted together instead of predicting
the mask value of one T-F unit independently [6]. To model
the time coherence, multiple frames expansion is generally
utilized, and a model named deep stacking network with time
series (DSN-TS) has also been proposed [7]. Besides, due to
the excellent power of feature extraction and transformation,
deep neural networks, more often than not, has been adopted
as the corresponding classifier or regressor of speech separa-
tion systems based on supervised learning.

However, there are two defects in previous speech separa-
tion systems. First, they typically perform speech separation
in one preselected domain. Spectrogram and cochleagram
are two commonly used time-frequency domains nowadays.
Compared with each other, a cochleagram provides a much
higher frequency resolution at low frequencies, while a spec-
trogram has a better resolution at high frequencies [8]. When
separation is carried out in one domain, complementary infor-
mation that could be obtained from the other representation
is neglected. Second, acoustic features and transformed fea-
tures (eg. learned with autoencoders) are extracted from the
original mixture signals and a one-round separation process is
performed in previous algorithms. However, we could expect
to extract more reliable features from the separated speech,
noting the separated speech is more close to clean speech. In
other words, there is information in the separated speech that
can be utilized to further improve the separation.

To address the deficiencies proposed above, we propose
a cross-domain cooperative deep stacking network (DSN-
CDC) structure to perform speech separation. This model
could capture the complementary information between dif-
ferent time-frequency representations and a denoised version
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Fig. 1. Architecture of the network. Coch-enhanced /spec-
enhanced indicates features extracted from separated speech
in the cochleagram /spectrogram domain. IRM-Coch /IRM-
Spec means that we take ideal ratio mask (IRM) in the
cochleagram /spectrogram domain as the training target of the
left /right DSN. ERM means estimated ratio mask.

of features could be directly obtained from the separated
speech of the previous DSN block. Due to these two reasons,
better performance is achieved by the model. Besides, as
there is no need to use denoising autoencoders (DA) [9, 10]
or denoising MLP [2] in the proposed structure, where only
one hidden layer in each block of DSN is used, our model is
much easier to train than previous speech separation systems
based on deep neural networks (DNN).

The paper is organized as follows. In Section 2, the model
structure of the proposed method is described. Experiments
and analysis are presented in Section 3. Section 4 concludes
the paper.

2. METHOD DESCRIPTION

2.1. An Architectural Overview

The architecture of the network is shown in Fig. 1. As can
be seen from the figure, two DSNs are used to do speech
separation in two time-frequency domains (cochleagram and
spectrogram) simultaneously and cooperatively. Cooperation
here means that “input” expanded vectors not only include
features from the previous layer, but also features extracted
from separated speech in the other domain. We expect pre-
liminarily separated speech from the two domains could pro-
vide complementary information for the separation process of
the next layer. In our experiments, obvious improvements are
obtained in both domains. Thus we name the network struc-
ture proposed here as cross-domain cooperative deep stacking

network (DSN-CDC).
It is worth noting that a variant of feature expansion prac-

tice is used in this study, where the output of each block is
not directly used for stacking. Instead, the output of each
block, which is the estimated ratio mask (ERM), is first used
to obtain the time-domain separated speech, and then fea-
tures extracted from the separated speech is concatenated with
the original features. In some sense, this practice makes our
model look like a tandem or cascading system, as the sepa-
rated speech could be regarded as being refiltered by the next
block. However, as the original features are retained in each
block, we still call our model as a stacking network.

2.2. Motivation

The standard DSN is composed of basic DSN blocks. Each
block, as developed in [11], consists of a simple, easy-to-learn
multilayer perceptron (MLP) with only one hidden layer. For
purely discriminative tasks experiments have shown that
DSN, despite its simplicity, performs better than the deep
belief network [12]. It is pointed out in [13] that higher block
is guaranteed to perform better on the training set than the
previous block, because the original input is retained. In
contrast to other deep architectures, the DSN does not aim to
discover effective transformed features. Due to the simplicity
of each block, the DSN is considerably easier to train.

As pointed out above, a variant of feature expansion prac-
tice is used in our model. In fact, we could directly get a de-
noised version of features from the separated speech, which
is shown in Fig. 2. As can be seen from the figure, the re-
extracted features are closer to the clean ones, and are much
more structured than the noisy ones. As there is an intuitive
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Fig. 2. The feature extracted from the separated speech of a
DSN block is a denoised version of the noisy features. Top
panel: clean MFCC features. Middle panel: corresponding
noisy MFCC features at -5 dB mixed with factory noise. Bot-
tom panel: corresponding re-extracted MFCC features.
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assumption structured data are easier to map to training tar-
gets (another structured data) [14], we could expect better
performance could be obtained by the next block of DSN.

The second motivation is as follows. It is verified in [5]
that combined features from different domains performs bet-
ter. We further developed this idea by extracting combined
features from combined separated speech in different repre-
sentative domains, which is named as cross-domain coopera-
tion (CDC) and found to be effective in this study. Besides,
multi-task learning can improve the performance of related
tasks by joint learning, which has been proven by empirical
and theoretical evidences [15, 16]. In a sense, our model is
ideologically inspired by and similar to multi-task learning,
except that the two tasks here cooperate by providing a cross-
domain “input” feature vector rather than a combined “out-
put” label vector.

2.3. Feature Extraction and Training Target

As mentioned in Section 1, various features and targets have
been investigated with their performance in speech separation
tasks. In this study, we use a window of the combined acous-
tic features proposed in [5] to predict the square-root of ideal
ratio mask (IRM) at each time frame.

The combined features include amplitude modulation
spectrogram (AMS), relative spectral transformed perceptual
linear prediction coefficients (RASTA-PLP), mel-frequency
cepstral coefficients (MFCC) and Gammatone filterbank
power spectra (GF). All features are smoothed by a second-
order ARMA filter [4, 17].

3. EXPERIMENTS AND ANALYSIS

3.1. Experiment Settings

We use Chinese National Hi-Tech Project 863 sentences,
which are recorded by 100 male and 100 female speakers
with 500 utterances for each speaker, as the speech corpus.
Five broad band noises, i.e., a factory noise, a babble noise,
a speech-shaped noise (SSN), a machine noise and a traffic
noise are additively mixed with clean speech to create the
training and test mixtures. To create the training set, 100
utterances from 5 male and 5 female speakers, with ten utter-
ances for each speaker, are mixed with the first three noises
at 0 and -5dB. To create the test set, we randomly choose 50
new utterances from unseen speakers (5 female and 5 male)
to mix with each of the five noises at -7, -5, -2 and 0 dB.

In evaluation, we take Short-Time Objective Intelligibility
measure (STOI) [18], Perceptual Evaluation of Speech Qual-
ity score (PESQ) [19] and SNR as the evaluation metrics.
STOI and PESQ can evaluate the objective speech intelligi-
bility and speech quality improvement, respectively. All re-
sults are obtained by comparing with the speech signal we ob-
tained through filtering the mixture signal with ideal square-
root IRM.

SNR−7 SNR−5 SNR−2 SNR0
0.6

0.7

0.8

0.9

1

SNR−7 SNR−5 SNR−2 SNR0

−5

0

5

10

15

SNR−7 SNR−5 SNR−2 SNR0
1

1.5

2

2.5

3

 

 

mixture DNN DSN DSN−CDC

SNR

PESQ

STOI

Fig. 3. Average STOI, SNR and PESQ results of different
models on the test set at different SNRs across five noise types
in the cochleagram domain.
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Fig. 4. Average STOI, SNR and PESQ results of different
models on the test set at different SNRs across five noise types
in the spectrogram domain.

To illustrate the effectiveness of our model, we compare it
with a standard DNN-based speech separation algorithm [6].
The DNN uses three hidden layers, each having 300 logis-
tic sigmoid units, and bounded (within [0,1]) linear output
units. The network is pretrained by RBM with dropout reg-
ularization [20]. We use a window (5 frames) of combined
features as inputs to the DNN (input dimension is 455). For
fair comparison, each block in our DSN-CDC model also has
300 sigmoid hidden units and bounded linear output units.

3.2. Result Analysis

Fig. 3 and Fig. 4 show the average results on the test set at dif-
ferent SNRs across five noise types using input features with
multiple frames expansion in the two domains. To verify the
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Table 1. The results that different systems obtains at 0 dB.

system
matched unmatched

STOI SNR PESQ STOI SNR PESQ
MIX 0.84 1.34 2.15 0.85 2.18 2.25
DNN 0.92 16.44 2.97 0.88 10.90 2.54
DSN 0.93 17.95 3.09 0.89 11.24 2.57

DSN-CDC 0.94 18.62 3.18 0.89 11.56 2.56

Table 2. The results that different systems obtains at -2 dB.

system
matched unmatched

STOI SNR PESQ STOI SNR PESQ
MIX 0.80 -0.83 2.05 0.81 0.03 2.12
DNN 0.90 15.10 2.83 0.85 8.98 2.35
DSN 0.92 16.45 2.96 0.86 9.19 2.38

DSN-CDC 0.93 17.02 3.01 0.87 9.37 2.39

effectiveness of stacking and cross-domain cooperation learn-
ing, we carried out separate experiments to evaluate them
(respectively corresponding to the results of DSN and DSN-
CDC). From the figure, we can see that the results of DSN are
better than the DNN based method. This is due to the stack-
ing of features of separated speech from DSN blocks, which
is lacked in DNN that only relies on features extracted and
transformed from the original mixtures to do separation. As
mentioned in Section 2, this is equivalent to using denoised
features to do separation, which has been proved to be effec-
tive in [2]. It can also be seen from the figure that DSN-CDC
leads to better results than DSN in all the three metrics, which
proves the effectiveness of the cross-domain cooperation pro-
cess. Meanwhile, the cooperative learning brings improve-
ments in both domains, especially in the spectrogram domain.
The reason is that the baseline performance of our model in
the spectrogram domain is not as well as in the cochleagram
domain. It indicates that the separation in the domain with
lower baseline benefits more from the cooperation.

In the results above, the DSN-CDC uses three blocks. In
our experiments, we have verified the hypothesis that perfor-
mance improves with the increase of blocks. As can be seen
from Fig.5, the STOI metric is getting better with the increase
of the number of stacked modules, on both matched-noise and
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Fig. 5. STOI results of the system when more blocks are
stacked. Left: matched-noise case. Right: unmatched-noise.

Table 3. The results that different systems obtains at -5 dB.

system
matched unmatched

STOI SNR PESQ STOI SNR PESQ
MIX 0.75 -4.06 1.90 0.76 -3.19 1.84
DNN 0.87 12.88 2.60 0.77 6.32 1.85
DSN 0.89 14.01 2.72 0.81 6.30 2.10

DSN-CDC 0.90 14.50 2.79 0.81 6.34 2.12

Table 4. The results that different systems obtains at -7 dB.

system
matched unmatched

STOI SNR PESQ STOI SNR PESQ
MIX 0.72 -6.21 1.76 0.72 -5.32 1.77
DNN 0.84 11.20 2.42 0.75 4.27 1.90
DSN 0.86 12.17 2.52 0.76 4.43 1.95

DSN-CDC 0.87 12.55 2.60 0.76 4.41 1.94

unmatched-noise test set. Similar trends have been found with
the other two metrics in our experiments.

To further investigate the generalization ability, Table 1
to Table 4 show the separation results in matched/unmatched
noise conditions at matched/unmatched SNRs in the cochlea-
gram domain. Similar trends appear in the spectrogram do-
main. The results show that our DSN and DSN-CDC method
have better performance and generalize well to unmatched-
SNR and unmatched-noise conditions. This indicates that
our method has both stronger modeling and generalization
ability than the DNN based method. We also note that the
DSN-CDC method remarkably outperforms the DSN method,
in both matched and unmatched conditions, which indicates
the cross-domain cooperation process is effective in obtaining
separated speech with higher quality and intelligibility.

4. CONCULUDING REMARKS

We have proposed to do speech separation with a cross-
domain cooperative deep stacking network (DSN-CDC). The
proposed structure can get denoised features from the output
of each DSN block, which can greatly improve performance
of separation. Besides, experiments have shown that the
multi-task learning inspired cross-domain cooperation prac-
tice can further boost the separation results. Based on a DSN
framework, our structure provides a new feature combination
way for cross-domain/task cooperation.

Compared with previous methods, we do not use denois-
ing autoencoders or denoising MLP to get robust transformed
features. Thus the supervised learning framework is easy to
train, as each block of the DSN has only one hidden layer.
However, we have obtained good results using this approach.
Experiments show that our method has strong modeling abil-
ity as well as generalization ability at very low SNR under
matched and unmatched noise conditions.
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