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ABSTRACT
It is known that the intelligibility of noisy speech can be
improved by applying a binary-valued gain mask to a time-
frequency representation of the speech. We present the
SOBM, an oracle binary mask that maximises STOI, an
objective speech intelligibility metric. We show how to de-
termine the SOBM for a deterministic noise signal and also
for a stochastic noise signal with a known power spectrum.
We demonstrate that applying the SOBM to noisy speech re-
sults in a higher predicted intelligibility than is obtained with
other masks and show that the stochastic version is robust to
mismatch errors in SNR and noise spectrum.

Index Terms— Speech enhancement, noise reduction,
speech intelligibility, binary mask, intelligibility metric

1. INTRODUCTION

At Signal-to-Noise Ratios (SNRs) below about 0 dB the intel-
ligibility of noisy speech is significantly reduced and conven-
tional speech enhancement techniques are normally unable
to improve intelligibility even though they may give substan-
tial improvements in SNR [1, 2]. A number of studies [3, 4]
have shown that the intelligibility of noisy speech can be im-
proved by applying a binary-valued gain mask in the Time-
Frequency (TF) domain. The mask is set to 1 in TF regions
dominated by speech energy and to a low value, often 0, in TF
regions dominated by noise. These studies have inspired the
development of enhancement algorithms that determine a bi-
nary mask by classifying the TF cells of the degraded speech
as speech-dominated or noise-dominated and then synthesise
the enhanced speech from the masked TF representation of
the noisy speech [5, 6]. These algorithms typically use fea-
tures extracted from the noisy speech as the input to a classi-
fier. The internal parameters of the classifier are found dur-
ing training by applying noisy speech samples together with
a target output consisting of an oracle mask, i.e. a mask that
is obtained with knowledge of the clean speech.

The most widely used oracle mask is the so-called Ideal
Binary Mask (IBM) introduced in [7], which is a function
of the instantaneous SNR in the corresponding TF cell. The
mask is given by

BIBM (k,m) =

{
1

0

|X(k, m)|2 > β |N(k, m)|2

otherwise

where X(k,m) and N(k,m) are the complex Short Time
Fourier Transform (STFT) coefficients of the speech and
noise respectively in frequency bin k of frame m. The Local
Criterion (LC), β, determines the SNR threshold above which
the mask will equal 1. The observation that speech at an ar-
bitrarily low SNR could be made fully intelligible by setting
β approximately equal to the average SNR was explained in
[8] whose authors suggested that the masked speech provides
two independent speech cues, a noisy speech signal and a
vocoded noise signal, and that it is the vocoded component
that is responsible for improving the intelligibility. In [9] the
vocoded signal component is created by the Target Binary
Mask (TBM) in which the speech energy in each TF cell
is compared with X(k), the average speech energy in that
frequency bin. The TBM is given by

BTBM(k,m) =

{
1

0

X(k, m) > β′X(k)

otherwise
(1)

where β′, the Relative Criterion (RC), typically lies in the
range±5 dB. The Universal Target Binary Mask (UTBM) [5]
eliminates the speaker-dependence of the TBM by replacing
X(k) in (1) by αX(k) where α is the average speech power
and X(k) is a speaker-independent power-normalised Long
Term Average Speech Spectrum (LTASS) [10].

There is evidence that the intelligibility of speech depends
not only on the instantaneous spectrum but also on its tem-
poral modulation [11, 12]. The intelligibility of the mask-
processed speech will not therefore be maximised if the clas-
sifier training target uses a mask such as the IBM, TBM or
UTBM that depends only on the instantaneous spectrum. In
this paper we propose an alternative oracle binary mask, the
STOI-optimal Binary Mask (SOBM). The SOBM explicitly
maximises an intelligibility metric, the Short-Time Objective
Intelligibility Measure (STOI), that takes account of spectral
modulation.

2. OBJECTIVE INTELLIGIBILITY MEASURE

The work of [13] led to the Articulation Index (AI) [14] as
a standardised method of objectively estimating the intelli-
gibility of speech. The AI and its successors, the SII and
STI [15, 16], are computed from the SNRs in a set of fre-
quency bands and have been extensively validated for speech
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degraded by additive stationary noise. It has been found, how-
ever, that these SNR-based metrics are unable to model the
effects of speech enhancement algorithms operating in the TF
domain such as [17]. A number of more recent metrics are
based on the correlation of the spectral amplitude modulation
of the clean and degraded speech signals in each frequency
band (see [18]). The most successful of these is STOI [19]
which has been found to correlate well with the subjective in-
telligibility of both unenhanced and enhanced noisy speech
signals [20, 21, 22]. Accordingly, in this paper, we advocate
an oracle mask that optimises STOI.

We present here a brief overview of the STOI metric;
readers are referred to [19] for a more detailed description.
The clean speech is first converted into the STFT domain
using 50%-overlapping Hanning analysis windows of length
25.6 ms. The resultant complex-valued STFT coefficients,
X(k,m), are then combined into J third-octave bands by
computing the TF cell amplitudes

Xj(m) =

√√√√√Kj+1−1∑
k=Kj

|X(k,m)|2 for j = 1, . . . , J (2)

where Kj is the lowest STFT frequency bin within frequency
band j. The correlation between clean and degraded speech
is performed on vectors of duration (25.6× 30)/2 = 384 ms.
For each m, we therefore define the modulation vector

xj,m = [Xj(m−M+1), Xj(m−M+2), . . . , Xj(m)]T (3)

comprising M = 30 consecutive TF cells within frequency
band j. The corresponding quantities for the degraded speech
are Y (k,m), Yj(m) and yj,m. Before computing the corre-
lation, the degraded speech is clipped to limit the impact of
frames containing low speech energy. The clipped TF cell
amplitudes, denoted by a tilde superscript, are determined as

Ỹj(m) = min

(
Yj(m), λ

‖yj,m‖
‖xj,m‖

Xj(m)

)
(4)

where λ = 6.623 and ‖ ‖ is the Euclidean norm. The corre-
sponding modulation vectors are ỹj,m. The STOI contribu-
tion of the TF cell (j, m) is then given by

d (xj,m, ỹj,m) ,
(xj,m − x̄j,m)

T
ỹj,m

‖xj,m − x̄j,m‖ ‖ỹj,m − ¯̃yj,m‖
(5)

where x̄j,m denotes the mean of vector xj,m. The overall
STOI metric is found by averaging the contributions of TF
cells over all bands, j, and all frames, m.

3. STOI-OPTIMAL BINARY MASK

We derive the SOBM, the binary mask that maximises STOI
for two cases: for a deterministic noise signal (DSOBM) and
for stochastic noise with a known power spectrum (SSOBM).

3.1. SOBM for Deterministic noise (DSOBM)

We apply a binary mask, Bj(m) ∈ {0, 1}, by forming the
masked signal Zj(m) = Bj(m)Yj(m) and thence, analogous
to (4), (3), the clipped masked vector z̃j,m. We optimise the
mask separately in each band, j, by computing

Bj(m) = arg max
{Bj(m):m=1,...,T}

(
T∑

m=1

d (xj,m, z̃j,m)

)
. (6)

We can compute this efficiently using a dynamic program-
ming approach in which the active states at frame m are a
subset of the 2M possible values of bj,m. Associated with
each active state is the STOI sum,

∑m
s=1 d (xj,s, z̃j,s), corre-

sponding to the best sequence {Bj(i) : i = 1, . . . ,m} whose
final M values match the entries of the corresponding bj,m
vector. At each iteration of the dynamic programming, we
first form a list of potential active states at frame m + 1 by
appending Bj(m + 1) = 0 and Bj(m + 1) = 1 to each of
the active states at framem; this doubles the number of active
states and may result in some duplicated states. For each of
these potential active states, the STOI sum is updated to frame
m + 1 and the D distinct states that have the highest STOI
sums are retained as the active states at frame m + 1. The
dynamic programming is initialised by taking bj,0 to be an
all-zero vector. For the tests in Sec. 4, we used D = 20000.

3.2. SOBM for Stochastic noise (SSOBM)

For the stochastic case, we wish to determine the mask that
maximises the expected value of STOI when X(k,m) is
known and the noise, N(k,m) = Y (k,m) − X(k,m), is
a stationary zero-mean complex Gaussian random variable
with variance

〈N(k,m)N∗(k,m)〉 = σ2
j (7)

where 〈 〉 denotes the expected value and σ2
j is assumed to

have the same value for all k in frequency band j. We now
wish to maximise the expected value of the sum given in (6).
To make the analysis tractable, we assume that clipping is
very rare in the stochastic noise case, so that Ỹj(m) ≈ Yj(m)

in (4). It follows from (7) that 2σ−2j |Y (k,m)|2 has a non-
central χ2 distribution with 2 degrees of freedom and non-
centrality parameter R(k,m) = 2σ−2j |X(k,m)|2. From (2),
therefore, 2σ−2j Y 2

j (m) has a non-central χ2 distribution with
νj = 2 (Kj+1 −Kj) degrees of freedom and non-centrality
parameter

Rj(m) = 2σ−2j

Kj+1−1∑
k=Kj

|X(k,m)|2 .

Thus
√

2σ−1j Yj(m) has a non-central χ distribution with
mean [23, 24] given by〈√

2σ−1j Yj(m)
〉

=

√
π

4
σjL

(0.5νj−1)
0.5 (−0.5Rj(m))
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Fig. 1: a) STOI against SNR for the 8 tested noise types. b) Average STOI of masked speech against STOI before processing
for the deterministic algorithm, DSOBM, applied to speech containing different noise types. Average improvement in STOI
across all noise types against STOI before processing. The TBMs and IBMs have c) third-octave band resolution and d) full
STFT resolution. "N" and "S" denote "noise-only" and "clean speech" input signals, respectively.

and second moment
〈
2σ−2j Y 2

j (m)
〉

= νj + Rj(m) where

L
(α)
n (z) is a generalised Laguerre polynomial [25]. Defining

the non-centrality vector, rj,m, analogous to (3), we can write

〈zj,m〉 =

√
π

4
σjbj,m ◦ L

(0.5νj−1)
0.5 (−0.5rj,m) (8)

where ◦ denotes elementwise multiplication and L(α)
n ( ) acts

elementwise on a vector argument. If we assume Yj(m) and
Yj(n) are independent for m 6= n, we have〈

‖zj,m − z̄j,m‖2
〉

=
〈
‖zj,m‖2

〉
−M

〈
z̄2j,m

〉
= 0.5σ2

j

M − 1

M
bTj,m (νj + rj,m) (9)

−
πσ2

j

4M

(
bTj,mL

(0.5νj−1)
0.5 (−0.5rj,m)

)2
+
πσ2

j

4M

∥∥∥bTj,m ◦ L(0.5νj−1)
0.5 (−0.5rj,m)

∥∥∥2 .
Finally, combining (5), (8) and (9), we can calculate

〈d (xj,m, zj,m)〉 ≈ (xj,m − x̄j,m)
T 〈zj,m〉

‖xj,m − x̄j,m‖
√〈
‖zj,m − z̄j,m‖2

〉 .
4. EVALUATION

The SOBM was evaluated using a subset of TIMIT [26] and
seven noise types from the NOISEX-92 corpus [27]. Fig. 1a

shows the average STOI plotted against SNR for speech de-
graded with each noise type. Most noise types give similar
curves, with the exceptions of ‘Volvo’, which is predomi-
nately low frequency, and ‘machine gun’, which is highly
non-stationary. The right hand axis gives the predicted in-
telligibility from [19] for previously unheard sentences.

Fig. 1b plots the average STOI of the masked speech
against the STOI before processing, for the DSOBM applied
to speech degraded with different noise types. The symbols
"N" and "S" on the horizontal axis denote "noise-only" and
"clean speech" input signals, respectively. The DSOBM re-
sulted in a large improvement in STOI for all noise types, at
all noise levels except for “S”; in the latter case, STOI was un-
changed from a unprocessed value of 1. With the exception of
machine gun noise at very poor SNRs, the DSOBM resulted
in an improvement in STOI that was largely independent of
noise type and in an average STOI above 0.8 for every noise
level including "N" (corresponding to >98% intelligibility).

Fig. 1c shows the average improvement in STOI across
all noise types against the STOI before processing, for the
DSOBM, and selected IBMs and TBMs, where the masks all
use identical third-octave band frequency resolutions. The
DSOBM outperformed all of the tested TBMs and IBMs at
all input noise levels excluding “S”. After the DSOBM, the
best performing mask was the TBM with β′=0 dB. The TBMs
gave consistently good results for noisy speech, but degraded
the intelligibility of clean speech. The IBMs preserved the
intelligibility of clean speech, but performed worse than the
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Fig. 2: Third-octave band resolution spectrogram of a) clean speech, and b) an IBM, computed by mixing the speech with
WGN at -20 dB SNR, with β=-20 dB. c) The SSOBM, optimised for the same noise type and SNR. High energy (A) and low
energy (B) regions of the plots are highlighted for comparison.

TBMs with very noisy speech.

In Fig. 1d the IBMs and TBMs used the full STFT resolu-
tion, much higher than that of the DSOBM. For test samples
with unprocessed STOIs below 0.6, the DSOBM still gave the
greatest improvement in STOI of all tested masks. For unpro-
cessed STOIs of 0.6 and above, the improvement in STOI
given by the DSOBM and the IBM with β=-10 dB was ap-
proximately equal.

Fig. 3 plots the improvement in STOI for different
SSOBMs relative to the DSOBM averaged over all noises
except machine gun noise, which is plotted separately. The
SSOBM gives about 0.02 less STOI improvement than the
DSOBM at all noise levels except for “S”. To assess the effect
of mismatch, we determined the SSOBMs for white-noise at
SNRs of −60 and −10 dB and applied these masks to all test
signals (B, C in Fig. 3). We see that, except for “S”, the
STOI improvement is almost equal to that of the SSOBM that
used a matched noise spectrum and SNR. This demonstrates
that it is possible to use the SSOBM for −60 dB white noise
as a noise-independent and SNR-independent mask with lit-
tle loss in intelligibility compared to the optimum DSOBM.
The highly non-stationary machine gun noise is plotted sepa-
rately in Fig. 3; its intermittent nature means that the SSOBM
performs significantly worse than the DSOBM.

Fig. 2 shows a third-octave resolution spectrogram of
speech, alongside an IBM with matching resolution and β=-
20 dB, and the SSOBM, both computed for speech with
white noise at -20 dB SNR. In both the high energy (A) and
low energy (B) highlighted regions of the spectrogram the
SOBM has captured the temporal modulations in the speech
spectrum more successfully than the IBM. The average STOI
contributions, (5), in regions A and B respectively are 0.52
and -0.18 for the IBM versus 0.82 and 0.85 for the SSOBM.

Fig. 4 shows the distribution of the difference in TF cell
STOI contributions, (5), between the SSOBM and the IBM
for the example of Fig. 2. In 76% of TF cells, (5) from the
SSOBM was higher than from the IBM and in a significant
number of cells it was much higher.
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Fig. 4: Distribution of the difference between (5) computed
on corresponding pairs of modulation vectors in SSOBM-
processed and IBM-processed speech.

5. CONCLUSION

We have presented a new oracle mask, the SOBM, that ex-
plicitly maximises an objective intelligibility metric and is
suitable for training a mask-based speech enhancer. For deter-
ministic additive noise, the DSOBM always results in a higher
predicted intelligibility than other oracle masks. When we as-
sume a stochastic noise signal, the SSOBM achieves a perfor-
mance close to the DSOBM for a wide range of SNRs and
noise types, even when the noises used for mask optimisation
and testing are mismatched.
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