
SPARSE HMM-BASED SPEECH ENHANCEMENT METHOD FOR STATIONARY AND
NON-STATIONARY NOISE ENVIRONMENTS

Feng Deng1, Chang-chun Bao1, and W. Bastiaan Kleijn1 2

1Speech and Audio Signal Processing Laboratory, School of Electronic Information and Control
Engineering, Beijing University of Technology, Beijing, China

2School of Engineering and Computer Science, Victoria University of Wellington, New Zealand
E-mail: dengfeng@emails.bjut.edu.cn, baochch@bjut.edu.cn, bastiaan.kleijn@ecs.vuw.ac.nz

ABSTRACT
We propose a sparse hidden Markov model (HMM)-based
single-channel speech enhancement method that models the
speech and noise gains accurately in both stationary and non-
stationary environments. The objective function is augment-
ed with an lp regularization term resulting in a sparse autore-
gressive HMM (SARHMM). The method encourages spar-
sity in the speech- and noise- modeling, which eliminates
the ambiguity between noise and speech spectra and, as a
consequence, provides improved tracking of the changes of
both spectral shapes and power levels of non-stationary noise.
Using the modeled speech and noise SARHMMs, we first
construct an estimator to estimate the noise spectrum. Then
a Bayesian speech estimator is used to obtain the enhanced
speech. The test results indicate that the proposed speech
enhancement scheme performs much better than the refer-
ence methods in non-stationary environments, while provid-
ing state-of-the-art performance for stationary conditions.

Index Terms— Speech Enhancement, Sparse ARHMM,
Gain Modeling, Non-stationary Noise

1. INTRODUCTION

Traditional speech enhancements, such as Wiener filtering
[1], the spectral-subtraction method [2] and the MMSE
method of Ephraim-Malah[3], generally do not perform well
in non-stationary noise environments as it is not possible to
specify prior knowledge about the speech and noise. To ad-
dress speech enhancement in non-stationary environments,
auto-regressive HMM(ARHMM)[4] and trained codebooks
[5][6][7] have been used successfully to model the statistics
of speech and noise. These methods model the change of
speech and noise spectral characteristics (i.e. spectral enve-
lope or spectral shapes).

As the accurate modeling of the gain variances of the
speech and noise can play an important role in speech en-
hancement in non-stationary noise environments, a revised
ARHMM-based method was proposed in [8]. In this ap-
proach, the speech and noise gains are considered as random

processes that describe the power levels of speech and noise,
respectively. The characteristics of speech and noise are
learned online, facilitating an accurate prior knowledge of the
gains. Motivated by its good performance, we used [8] as the
basis for the work presented in this present paper.

A problem with the Bayesian estimation procedures used
to estimate the speech in the ARHMM-based approach is that
the linear combinations of multiple ARHMM states that are
used to describe observed speech spectral shapes are not re-
stricted to look like speech. For example, two spectra with
three formants may combine to a spectrum with six formants
that cannot be produced by a human. Such combined speech
spectra can be used to represent a noise observation. Similar-
ly, noise spectra can be combined to represent speech spectra.
Therefore, an ambiguity problem between the spectral shapes
of speech and those of noise exists, which limits the overall
performance of the ARHMM gain model.

In this paper, we propose a solution to the ambiguity
problem by introducing sparsity into the ARHMM model and
derive a new approach that we refer to as sparse ARHMM
(SARHMM). In the SARHMM, the sparsity is induced to the
transition probabilities and the observation probabilities by
using an lp regularization [9], which ensures that only a few
states have a significant contribution to the modeled signal
for any segment. The sparsity of speech and noise modeling
helps to improve the tracking of the changes of both spectral
shapes and power levels of non-stationary noise.

ARHMM-based methods [4] [8], have a second inherent
problem: clearly audible noise remains between the harmon-
ics for the estimated voiced speech. We present a new solu-
tion that addresses this problem. We exploit the fact that the
SARHMM provides estimates of both the noise and speech
parameters, which aid in finding of a good noise model es-
timate. Therefore, instead of estimating speech directly, we
first construct a noise estimator to estimate the noise power
spectrum. Then, a Bayesian speech estimator [10] is derived
to obtain the enhanced speech, in which the noise between the
harmonics of voiced speech has been removed.
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2. THE ARHMM SIGNAL MODEL

Assuming that the clean speech Xt is contaminated by an
uncorrelated additive noise W t, then the t’th frame noisy
speech Y t (K samples) can be modeled as: Y t = Xt+W t.

Let xT−1
0 = {x0,...,xT−1} denote the realization of a clean

speech sequence from frame 0 to T-1. In the following, we
use the overbar ’¯ ’ to label the parameters as belonging to
the speech ARHMM. The probability density function (pdf)
of xT−1

0 are modeled by an N̄-state ARHMM as [4][8].

p(xT−1
0 ) =

∑
s̄T−1
0

T−1∏
t=0

ās̄t−1s̄tps̄t(xt), (1)

where s̄T−1
0 = (s̄t)

T−1
t=0 denotes a sequence of speech

ARHMM states, and s̄t ∈ {1, ..., N̄} denotes the state of
speech at frame t, ās̄t−1s̄t is the state transition probability
from state s̄t−1 to s̄t, ās̄−1s̄0 is the probability of the initial
state s̄0. The dependency of the probability density of the
clean speech on the speech gain can be made explicit by
means of the law of total probability [8]:

ps̄t(xt) =

∞∫
−∞

ps̄t(ḡ
′

t)ps̄t(xt|ḡ
′

t)dḡ
′

t, (2)

where ḡ
′

t = log(ḡt), and ḡt denotes the linear speech gain.
Following [8], we model the pdf ps̄t(ḡ

′

t) of ḡt as a state-
dependent log-normal distribution:

ps̄t(ḡ
′

t) =
1√

2πσ̄2
s̄t

exp

(
−
[
ḡ
′

t − (µ̄s̄t + q̄t)
]2

2σ̄2
s̄t

)
, (3)

where µ̄s̄t + q̄t denotes a mean value and σ̄2
s̄t denotes the vari-

ance. The parameters µ̄s̄t and σ̄2
s̄t are time-invariant and can

be estimated off-line. The parameter q̄t is used to compensate
for the speech-gain bias, which can be estimated on-line.

For a given gain ḡt, we assume speech to be a zero-mean
p̄’th order Gaussian AR processes. The pdf ps̄t(xt|ḡ

′

t) given
a speech gain ḡ

′

t can be described as [4][8]

ps̄t(xt|ḡ
′

t) =
exp

(
− 1

2ḡt
x#
t D̄

−1
s̄t xt

)
(2πḡt)K/2|D̄s̄t |

1/2
, (4)

where # denotes Hermitian transposition, |.| denotes the de-
terminant, D̄s̄t = (Ā

#
s̄tĀs̄t)

−1 is the covariance matrix of
the AR process, Ās̄t is a K × K lower triangular Toeplitz
matrix in which the first p̄ + 1 elements of the first column
constitute the speech AR coefficients (ᾱ0, ᾱ1, ..., ᾱp̄).

To capture the high diversity and variability of acoustical
noises in a non-stationary environment, we model the noise
similarly to the speech. Thus, we use a noise ARHMM that
is nearly identical in form to the ARHMM for the speech. We
label the noise model parameters by ’¨ ’, in contrast to the
overbar ’¯’ for the speech model. The pdf ps̈t(wt) is defined

similarly to equations (1). However, for noise we use only a
single gain [8]. Thus, the noise gain is modeled as

p(g̈
′

t) =
1√

2πσ̈2
exp

(
− (g̈

′

t − µ̈t)2

2σ̈2

)
, (5)

where the parameters have the same meaning as in the case
of (3). The gain-conditional probability density of the noise,
ps̈t(wt|g̈

′

t) is defined similarly to that for speech in (4).
Based on the speech and noise ARHMM models, we can

derive the pdf of the noisy speech. Let st = (s̄t, s̈t) denote
the noisy speech state at frame t, which is a composite state
of speech and noise, so there are N̄ × N̈ states in the noisy
speech model. The pdf pst(yt) of noisy speech yt for a given
composite state st can be written as [8]:

pst(yt) =

∫ ∫
pst(yt, ḡ

′

t, g̈
′

t)dḡ
′

tg̈
′

t

=

∫ ∫
ps̄t(ḡ

′

t)p(g̈
′

t)pst(yt|ḡ
′

t, g̈
′

t)dḡ
′

tg̈
′

t,

(6)

where the pdf pst(yt|ḡ
′

t, g̈
′

t) is a Gaussian distribution with
zero-mean and covariance Dst = ḡtD̄s̄t + g̈tD̈s̈t .

By using a scaled Dirac delta function δ(.), the integral in
(6) can be approximated as [8]:

pst(yt) ≈ pst(yt, ˆ̄g
′

t, ˆ̈g
′

t)

{ˆ̄g
′

t, ˆ̈g
′

t} = arg max
ḡ
′
t,g̈
′
t

log pst(yt, ḡ
′

t, g̈
′

t),
(7)

The validity of this approximation was confirmed in [8],
and the concrete procedure to obtain the optimal speech and
noise gain pair {ˆ̄g′t, ˆ̈g

′

t} was also discussed there.

3. PARAMETER ESTIMATION OF SARHMMS

To solve the ambiguity problems, we proposed a sparse
ARHMM (SARHMM), and in this section, the off-line es-
timation of the time invariant parameters of the speech and
noise SARHMM are considered. The on-line estimate of the
time-varying parameters is similar to that in [8].

The ARHMM parameters are often trained by the Baum-
Welch approach that is based on the expectation maximiza-
tion (EM) algorithm [11]. The auxiliary Q function of speech
model often can be split into separate terms for the three types
of model parameters θ = (π,A,B): the initial distribution of
states (π), the state transition probability matrix (A) and the
observation probability matrix (B).

Q(θ, θ
′
) =

∑
s̄t

log p(s̄t|O, θ)p(s̄t|O, θ
′
)

=
∑
s̄t

log πs̄0p(s̄t|O, θ
′
) +

∑
s̄t

T−1∑
t=0

log ās̄t−1s̄tp(s̄t|O, θ
′
)

+
∑
s̄t

T−1∑
t=0

log ps̄t(xt)p(s̄t|O, θ
′
), (8)
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where O = (xt)
T−1
t=0 is the observation sequence, θ

′
is the

previous estimation of model parameters θ.
Following [9], we first encourage sparsity to transition

probabilities by introducing the lp norm H(A) = ||A||1,p1

to the second term of equation (8), and then we can derive the
update equation of transition probabilities of SARHMM as

āij =

( T−1∑
t=0

p(s̄t−1 = i, s̄t = j|O, θ′)− η1Āij

)+

N̄∑
h

( T−1∑
t=0

p(s̄t−1 = i, s̄t = h|O, θ′)− η1Āih

)+
(9)

where (·)+ = max(·, 0). Āij is the regularization term for
transition probability, which is defined as

Āij = āij∇āijH(A) = āij
[
āij/(

∑
h

āp1

ih)1/p1
]p1−1

, (10)

where ∇ is the gradient operator and p1 is a regularization
parameter.

We also can encourage sparsity to the observation proba-
bility ps̄t(xt) of speech ARHMM by introducing the lp norm
H(B) = ||B||1,p2

(p2 is a regularization parameter) to the
third term of equation (8). Similar to the derivation of equa-
tion (10), the regularization term B̄s̄t.xt for observation prob-
ability of speech SARHMM can be obtained by

B̄s̄t.xt
= ps̄t(xt)∇ps̄t (xt)H(B)

= ps̄t(xt)

[
ps̄t(xt)(∑

t
pp2
s̄t (xt)

)1/p2

]p2−1

,
(11)

Using the regularization term B̄s̄t.xt
to the third term of

equation (8), we can derive the update equations of the train-
ing parameters θ̄ = {µ̄s̄, σ̄2

s̄ , ᾱs̄, q̄r̄} of observation probabil-
ity for the jth iteration as (12)-(14):

µ̄
(j)
s̄ =

∑
r

∑
t

ˆ̄ω(s̄t)
∫
ḡ
′

tΞ(s̄t)dḡ
′

t − q̄r∑
r

∑
t

ˆ̄ω(s̄t)
, (12)

σ̄
2(j)
s̄ =

∑
r

∑
t

ˆ̄ω(s̄t)
∫

(ḡ
′

t − µ̄
(j)
s̄ − q̄r)2Ξ(s̄t)dḡ

′

t∑
r

∑
t

ˆ̄ω(s̄t)
, (13)

q̄(j)
r =

∑
r

∑
t

ˆ̄ω(s̄t)

σ̄
2(j)
s̄

∫
(ḡ
′

t − µ̄
(j)
s̄ )Ξ(s̄t)dḡ

′

t∑
r

∑
t

ˆ̄ω(s̄t)

σ̄
2(j)
s̄

, (14)

where ω̄(s̄t) = p(s̄t|xT−1
0 , ˆ̄θ(j−1)) is the posterior state

probability, ˆ̄ω(s̄t) = max
(
(ω̄(s̄t) − η2Bs̄t.xt

, 0
)
, Ξ(s̄t) =

ps̄t(ḡ
′

t|xt, ˆ̄θ(j−1)) can be approximated as a Gaussian distri-
bution by applying a Taylor expansion [8]. For the update
equation of the AR coefficients ᾱs̄, we can first estimate the
autocorrelation sequence (15)

r̄
(j)
ᾱs̄

[i] =

∑
r

∑
t

ˆ̄ω(s̄t)r̄xt [i]
∫

(ḡ
′

t)
−1Ξ(s̄t)dḡ

′

t∑
r

∑
t

ˆ̄ω(s̄t)
, (15)

and then apply the Levinson-Durbin recursion algorithm [12].
Where r̄xt [i] denotes the autocorrelation sequence of xt.

The noise SARHMM can also be obtained by encouraging
the sparsity to transition probabilities and observation proba-
bilities. The noise SARHMM model is obtained using the
standard Baum Welch algorithm [8] [11] using training data
normalized by the long-term averaged noise gain. The noise
gain variance σ̈2

s̈ can be estimated as the sample variance of
the logarithm of the excitation variances after the normaliza-
tion, and the estimation process for the noise AR coefficients
α̈s̈ are similar to speech AR coefficients ᾱs̄.

4. SPEECH ENHANCEMENT USING SARHMMS

In addition to the ambiguity problem, existing ARHMM-
based methods [4][8] have a second inherent problem: clearly
audible noise remains between the harmonics of the estimated
voiced speech. For this problem, we exploit the fact that the
SARHMM provides estimates of both the noise and speech
parameters, which aid in finding of a good noise model es-
timate. Therefore, instead of estimating speech directly, we
first construct a noise estimator to get the noise spectrum.
Then a Bayesian speech estimator is derived to obtain the
enhanced speech.

4.1. Noise Estimation

In this section a noise estimator is constructed that is based
on the SARHMM parameters of speech and noise. Following
[4], we can obtain the noise spectrum estimation as

ˆ̈
λ(k) =

∑
st

ω(st)

Ωt
{[(1−Hst(k))Y (k)]2+Hst(k)λ̈s̈t(k)},

(16)

where t is the frame index, k is the frequency bin, Y (k) is
the kth spectral magnitude of noisy speech and Hst(k) is the
attenuation factor of the Wiener filter for state st, λ̄s̄t(k) and
λ̈s̈t(k) are speech and noise power spectra associated to each
composite state [13]. The ω(st) and Ωt are defined by

ω(st) = γ(st)pst(yt, ˆ̄g
′

t, ˆ̈g
′

t),

Ωt =
∑
st

γ(st)pst(yt, ˆ̄g
′

t, ˆ̈g
′

t) =
∑
st

ω(st),
(17)

where γ(st) denotes the probability of being in the composite
state st given all past noisy observation up to frame t-1, which
is defined in [8].

4.2. Speech Estimation

Based on the estimated noise spectrum ˆ̈
λ(k), we derive the

Bayesian estimator to obtain the enhanced speech. For deriv-
ing the Bayesian estimator, we can minimize the expectation
of a given cost function d(X(k), X̂(k)) and obtain the speech
estimate of X̂(k), where X(k) is the kth spectral magnitude
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of clean speech. The cost function d(X(k), X̂(k)) that we
minimize is [10]

d(X(k), X̂(k)) =

(
X(k)− X̂(k)

)2
X(k)

, (18)

Using a Gaussian statistical model [10], we obtain the
speech estimate

X̂(k) =

√
vk

ˆ̈
λ(k)

Y (k)

1

Γ(1/2)Φ(1/2, 1;−vk)
, (19)

where vk is variable defined in [10], Γ(·) is the Gamma func-
tion, Φ(·) is the confluent hyper-geometric function [10].

5. EXPERIMENTS AND RESULTS

In this section, the performance evaluation is discussed.
Twenty four utterances (two female and two male speakers,
each speaker for six sentences) were taken from the American
sub-database of the NTT database. The sampling rate was 8
kHz. The White, Factory1, Factory2 and F16 noise from the
NOISEX-92 [14] were used as the stationary noise and the
Factory1, Factory2, F16 and Babble noise from the NOISEX-
92 [14] were used to create three kinds of non-stationary
noise: noise changing from Factory1 noise to F16 cockpit
noise, noise changing from F16 noise to Babble noise, noise
changing from Babble noise to Factory2 noise. The noise
length was eight seconds and the noise changed abruptly after
four seconds. The noisy utterances were created according to
ITU-T P.56 standard [15] and the input SNRs of noisy speech
are 0 dB, 5 dB, 10 dB and 15 dB, respectively.

The SARHMM used speech and noise states with a single
mixture component, as more general mixtures lead to ambigu-
ity. It operated with a frame size N is 256 samples. The sam-
ples were sine windowed with 50% overlap between adjacent
frames. The regularization parameters were set to p1 = 0.4
and η1 = 0.5 and p2 = 0.4 and η2 = 0.032. The speech
SARHMM had 64 states and an AR model of order 100. The
one general noise SARHMM that covers many noise scenar-
ios had 16 states and and an AR model of order six.

We compared the new method with, the MMSE method
of Ephraim-Malah (MMSE) [3], MMSE estimator based on
generalized gamma priors (GammaPrior) [16] and ARHMM-
based gain modeling method (ARHMM) [8]. The segmental
SNR (SNRseg) measure [17] and the perceptual evaluation of
speech quality (PESQ) [18] were used to evaluate the perfor-
mance. For the calculation of SNRseg, frames with an aver-
age energy 50 dB below the long-term average energy of the
utterance were excluded.

The experimental results are presented in TABLE 1 and 2,
respectively. From the two tables we can see that the proposed
method can produce a higher average SNRseg improvement
and a better speech quality. It is obvious that the proposed
method performs better than the reference methods in non-
stationary noise environments, while providing state-of-the-
art performance for stationary conditions.

6. CONCLUSION

We introduced a sparse hidden Markov model (SARHMM)-
based single-channel speech enhancement method. The
method also includes an improved speech estimator that,
in contrast to existing ARHMM and most codebook methods,
enhances the spectral fine-structure of speech. Our results
show that the method performs significantly better in non-
stationary noise environments than reference enhancement
procedures, while providing state-of-the-art performance
for stationary conditions. The results confirm that sparsi-
ty, together with using only one mixture component for the
observations, eliminates the ambiguity problem that ARHM-
M methods suffer from. It is better than existing ARHMM
methods for stationary environments because of the improved
speech estimator.

Table 1. Test Results of SNRseg Improvement

Methods 0dB 5dB 10dB 15dB

Non-stationary
MMSE 5.43 3.64 2.27 0.82

GammaPrior 6.13 5.19 4.28 3.33
ARHMM 5.50 3.70 1.76 0.17

SARHMM 7.69 6.16 5.13 4.06

Stationary
MMSE 6.45 4.56 2.79 0.81

GammaPrior 9.18 7.49 5.07 3.26
ARHMM 7.65 5.89 3.91 1.67

SARHMM 9.55 7.73 5.47 3.71

Table 2. Test Results of PESQ
Methods 0dB 5dB 10dB 15dB

Non-stationary
Noisy speech 1.654 1.954 2.286 2.614

MMSE 1.937 2.338 2.639 2.885
GammaPrior 2.052 2.408 2.754 2.985

ARHMM 1.846 2.244 2.575 2.856
SARHMM 2.169 2.501 2.814 3.080

Stationary
Noisy speech 1.565 1.839 2.158 2.496

MMSE 1.835 2.227 2.548 2.807
GammaPrior 2.155 2.514 2.816 3.067

ARHMM 1.807 2.209 2.501 2.753
SARHMM 2.228 2.572 2.864 3.091
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