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ABSTRACT

In single-channel speech enhancement the spectral amplitude of

the noisy signal is often modified while the noisy spectral phase is

directly employed for signal reconstruction. Recently, additional

improvement in speech enhancement performance has been re-

ported when the noisy phase is modified. In this work, we propose a

Bayesian estimator for phase of harmonics given the noisy speech.

The proposed estimator relies on the fundamental frequency and

the signal-to-noise ratio at harmonics. Throughout our experiments,

we evaluate the performance of the proposed phase enhancement

in comparison with the noisy phase, a benchmark and the clean

phase as the upper-bound. The proposed method leads to joint im-

provement in quality and intelligibility at different SNRs and noise

types.

Index Terms— Phase estimation, Bayesian estimation, har-

monic model, speech enhancement, Von Mises distribution.

1. INTRODUCTION

Many previous studies in single-channel speech enhancement have

been concentrated on deriving estimators for spectral amplitude

while they suggest to copy the noisy phase in signal reconstruction

(see e.g. [1] for a detailed review). The importance of phase for

an improved speech enhancement performance has been demon-

strated [2–12] . These improvements require a reliable clean phase

estimate from the noisy speech. Therefore, finding an improved

estimate for the spectral phase at harmonics is of great importance.

In this paper, we propose a novel Bayesian phase estimator

assuming a von Mises distribution on phase. The proposed estima-

tor relies on the harmonic model and depends on the fundamental

frequency and signal-to-noise ratio at harmonics. We quantify the ef-

fectiveness of the proposed phase estimator in single-channel speech

enhancement via comparing its performance versus the noisy phase

(lower-bound), clean phase (upper-bound) and a benchmark [7].

The paper is arranged as follows: section 2 presents an overview

on previous phase and MAP estimators, section 3 presents the

proposed phase estimator, section 4 presents results and section 5

concludes on the work.

The work was partially funded by the K-Project ASD in the context
of COMET Competence Centers for Excellent Technologies by BMVIT,
BMWFJ, Styrian Business Promotion Agency (SFG), Province of Styria
Government of Styria and the Technology Agency of the City of Vienna
(ZIT). The programme COMET is conducted by Austrian Research Promo-
tion Agency (FFG).

2. RELATION TO PREVIOUS WORKS

2.1. Previous Phase Estimation Methods

The problem of phase estimation dates back to 1980’s when sev-

eral attempts were made to estimate a time-domain signal from a

modified STFT amplitude [13, 14]. Griffin and Lim (GL) first pro-

posed an iterative method to reconstruct a time domain signal from

a given modified STFT amplitude in a minimum mean square er-

ror sense [14]. In [15], a partial phase reconstruction was proposed

where the GL solution was confined to a limited set of signal compo-

nents resulting in an improved performance. In [5], additional con-

straint on the consistency between the STFT magnitude and phase

was suggested leading to consistent Wiener filter. The method re-

quired the ad-hoc parameter adjustments. The aforementioned GL-

based methods, are limited in performance due to their dependency

on accurate estimates of the source amplitude spectra, thus, their

performance is limited. Furthermore, many iterations are required to

reach a reasonable signal reconstruction quality [12].

More recently, in [8] a phase estimation method was proposed

relying on the geometry. The group delay deviation constraint on

the spectral phase was employed in order to remove the ambigu-

ity in the phase candidates. In [4], the geometric approach was

extended to other time-frequency constraints defined on the spec-

tral phase which was shown useful to derive an iterative closed-loop

phase-aware speech enhancement [6]. In [16], a phase enhancement

strategy based on randomization of the spectral phase was proposed.

Successful reduction of musical noise was demonstrated in the auto

focusing noise suppression application. The method required ad-hoc

adjustments of the key parameters. The authors in [7] proposed to

modify the phase values by incorporating the temporal constraints

on the phase at voiced frames and compensating the phase response

of the window across frequency. The method requires an accu-

rate fundamental frequency estimate and a quite reliable voice ac-

tivity detection, and its performance depends on the previous time-

frequency phase estimates. Improvement in the perceived quality

was reported for low signal-to-noise ratio obtained at the expense

of a buzzy speech quality in particular at higher harmonics [3, 17].

A similar idea in [17] was used to estimate the noise in between

harmonics and reported improved noise reduction at voiced frames,

at the expense of undesirable artifacts and buzzyness in the recon-

structed speech [17].

2.2. Previous MAP Estimators

In the following, we list the previous MAP estimators for speech en-

hancement; In [18,19] joint-MAP (JMAP) short-time spectral ampli-

tude (STSA) and phase estimator conditioned on the observed com-
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plex STFT coefficient was derived and it was shown that the noisy

phase is the MAP phase estimate (similar conclusion was drawn

in the JMAP demonstrated in [20]). Finally in [21], under a uni-

form phase prior distribution, the MAP estimator in log-spectral do-

main was derived and the MAP phase estimate was shown to be the

noisy phase. In all these methods, the simplifying assumptions are

twofold: i) the independence assumption in the joint amplitude and

phase distribution, and ii) the assumption of a uniform phase prior

distribution. In the following, we derive the MAP estimator of har-

monic phase assuming a von Mises distribution phase prior.

3. PROPOSED HARMONIC PHASE ESTIMATION

As our signal model, we assume that the observed noisy speech

is modeled as sum of harmonics corrupted in additive noise. The

noisy signal is segmented into frames denoted by y(n, l) where n ∈
[0, N − 1] and l denotes the frame index with frame length N :

y(n, l) =

Hl
∑

h=1

A(h, l) cos(hω0(l)n+ θ(h, l)) + ν(n, l), (1)

where y(n, l), ν(n, l) and ω0(l) denote the observed noisy speech,

the additive noise and the normalized fundamental frequency at

frame l, respectively, with Hl as the number of harmonics. Each

harmonic h ∈ [1, Hl] is characterized by the harmonic triple of am-

plitude A(h, l), frequency hω0(l) and phase θ(h, l). In this work,

we aim at enhancing the phase without modification of the ampli-

tude. In the following we derive the maximum a posteriori estimator

for harmonic phase denoted by θ̂(h, l) for the case of one sinusoid in

noise and in Section 3.2 extend it to sum of harmonics as in speech.

3.1. MAP Phase Estimator using Von Mises Phase Prior

Consider one harmonic of the clean speech signal as:

ȳ(n) = A cos(hω0n+ θ) + ν(n), (2)

characterized by the sinusoidal triple parameters, i.e. {A, hω0, θ}
with defining the observation vector as ȳ = {ȳ(n)}N−1

n=0 . The MAP

solution for θ̂ is obtained by solving the following:

θMAP = argmax
θ

p(ȳ|θ)p(θ)

p(ȳ)
= argmax

θ
p(ȳ|θ)p(θ). (3)

Given the observed noisy signal and under white Gaussian noise as-

sumption for ν(n), for the sinusoidal phase values p(ȳ|θ) is:

p(ȳ|θ) = c0 exp

{

−
1

σ2

N−1
∑

n=0

(

ȳ(n)− A cos(hω0n+ θ)

)2
}

,

(4)

with σ2 as the noise variance and c0 = (2πσ2)−
N

2 . The novelty of

this work lies in incorporating a more generalized prior distribution

known as von Mises than the typically used uniform phase prior as-

sumption for phase. The von Mises distribution (also used in speech

analysis/synthesis [22]) is the maximum entropy distribution for a

given circular mean (µc) and concentration (κ) [23, Section 3.5.4].

Here, in order to take into account the uncertainty in the prior phase

information in our proposed MAP phase estimator, we incorporate

the von Mises distribution given by:

θ ∼ VM(µc, κ) ; p(θ) =
exp (κ cos(θ − µc))

2πI0(κ)
, (5)

where Iν(·) is the modified Bessel function of the first kind of order

ν. Plugging (5) and (4) in (3) and discarding the constants, we get:

L(θ) = −
1

σ2

N−1
∑

n=0

(ȳ(n)−A cos(hω0n+ θ))2 + κ cos(θ − µc).

(6)

The MAP solution is given by taking the derivative of L(θ) with

respect to θ and setting it equal to zero. Similar to [24, Section 7.5],

here we assume that
∑N−1

n=0 sin(hω0n+ θ) cos(hω0n+ θ) ≈ 0 for

hω0 not close to 0 or π and for N being large enough, we obtain

dL(θ)

dθ
= −

1

σ2

N−1
∑

n=0

2Aȳ(n) sin(hω0n+ θ)− κ sin(θ − µc). (7)

Using sin(a± b) = sin(a) cos(b)± cos(a) sin(b) we get

dL(θ)

dθ
= cos(θ)

(

2A

σ2

N−1
∑

n=0

(ȳ(n) sin(hω0n)) − κ sin(µc)

)

+ sin(θ)

(

2A

σ2

N−1
∑

n=0

(ȳ(n) cos(hω0n)) + κ cos(µc)

)

.

(8)

The MAP solution denoted by θMAP is then given by solving for θ

resulting in
dL(θ)
dθ

= 0 leading to the following equation:

sin(θMAP )

cos(θMAP )
=

− 2A
σ2

∑N−1
n=0 (ȳ(n) sin(hω0n)) + κ sin(µc)

2A
σ2

∑N−1
n=0 (ȳ(n) cos(hω0n)) + κ cos(µc)

, (9)

which finally results in the following MAP solution for phase esti-

mate:

θMAP = tan−1 − 2A
σ2

∑N−1
n=0 ȳ(n) sin(hω0n) + κ sin(µc)

2A
σ2

∑N−1
n=0 ȳ(n) cos(hω0n) + κ cos(µc)

(10)

The MAP phase estimate is a function of the following parameters:

parameters of von Mises prior (µc and κ), data length (N ) and the lo-

cal signal-to-noise ratio ( A
σ2 ). As an extreme scenario of large SNRs

(A � σ2), the MAP estimator asymptotically degenerates to the

ML estimate given by the noisy DFT phase sampled at the harmonic

frequency [24, p. 168]. At such high SNR scenario, the noisy phase

is more weighted rather than the mean value. This is possible by

incorporating a low κ in von Mises prior considered in the proposed

estimator. On the other hand, the additional dependency on the har-

monic SNR (given by A
σ2 ) serves as a reliability check mechanism

about the estimated phase implying that at low SNRs, the proposed

MAP estimator relies only on the mean value µc. The von Mises

distribution phase prior enables to sweep a flexible framework to

take into account the uncertainty in phase estimation captured by the

mean and variance. A low κ leads to a uniform phase prior while a

large concentration κ→ ∞ resembles a delta Dirac denoting a high

certainty in the estimated phase (at high SNRs).

3.2. Extension to Speech Signal

Here we extend the derived MAP phase estimate for one harmonic

in noise given in (10) to sum of harmonics as observed in speech

signal. The estimator is applied to each frame l and at each har-

monic h individually. Therefore, using (10) we obtain the estimator

of harmonic phase as in (11).

Letw(n) as the window function and Y (k, l) = F{w(n)y(n, l)}
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θ̂(h, l) = tan−1
− 2A(h,l)

σ2(h,l)

∑N−1
n=0 y(n, l) sin(hω0(l)n) + κ(h, l) sin(µc(h, l))

2A(h,l)

σ2(h,l)

∑N−1
n=0 y(n, l) cos(hω0(l)n) + κ(h, l) cos(µc(h, l))

. (11)

as the DFT of the noisy input. We define |Y (k, l)| and φ = ∠Y (k, l)
as the noisy spectral amplitude and phase, respectively with k ∈
[0,K − 1] as the frequency bin and K as the DFT length. In order

to synthesize the final phase-enhanced time-domain signal, we need

to transform the MAP harmonic phase estimates given in (11) to the

STFT domain. This is done by the modification of the frequency

bins lying within the main-lobe width of the analysis window. The

enhanced STFT phase φ̂(k, l) is then given by:

φ̂(bhω0(l)Kc+ i, l) = θ̂(h, l),∀i ∈ [−Np(l)/2, Np(l)/2], (12)

where Np(l) = min(Nw, ω0(l)K/(2π)) denotes the minimum

value of either the main-lobe width of the analysis window Nw or

the frequencies close to the neighboring harmonic. The phase values

between the harmonics not lying within the analysis window are not

modified in order to preserve information at plosives or fricatives

frames. The protection of these frames is important in order to

preserve a high speech intelligibility performance (see the results

in Section 4). Finally, the phase-enhanced time-domain signal is

obtained by applying the inverse DFT on

Ŷ (k, l) = |Y (k, l)|ejφ̂(k,l), (13)

followed by the overlap-add procedure.

3.3. Von Mises Distribution Parameter Estimation

In this section the estimation of the parameters of the phase distribu-

tion is presented. Under the assumption that a reliable fundamental

frequency estimate is given, as shown in [25], the spectral phase

ψ(h, l) of each harmonic is estimated by a linear interpolation of the

spectral phase values φ(k, l) along the frequency as depicted in Fig-

ure 1. Using the phase decomposition principle in [22], the spectral

phase ψ(h, l) is decomposed as follows:

ψ(h, l) = hS
∑l

l′=0
ω0(l

′) + Ψ(h, l), (14)

where the first term is linear phase characterized by the fundamental

frequency ω0(l) and the frame shift S. The second term captures the

phase contribution by the vocal tract and the glottis source. Similar

to [26], we fit a von Mises distribution on Ψ(h, l) to characterize the

statistical behavior as the mean and variance given in the following:

z(h, l) =
1

R

∑l+R/2

l′=l−R/2
ejΨ(h,l′), (15)

µc(h, l) = ∠z(h, l), (16)

σ2
c (h, l) = 1− |z(h, l)|, (17)

where R denotes the number of frames within 20 ms to capture the

short-time stationarity of speech. The mean value after addition of

the linear phase denoted by µc(h, l) at each frame is obtained by:

µc(h, l) = hS
∑l

l′=0
ω0(l

′) + µ(h, l). (18)

The concentration κ(h, l) is calculated by inversion of the following

relation [27] as proposed in [28]:

σ2
c (h, l) = 1−

I1(κ(h, l))

I0(κ(h, l))
. (19)
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Fig. 1. Estimation of harmonic phase: DFT is applied to each frame y(n, l)
(left) spectral amplitude |Y (k, l)| (right) spectral phase φ(k, l) along fre-
quencies k, and the harmonic phase ψ(h, l) is estimated by linear interpola-
tion of φ(k, l) dependent on the normalized fundamental frequency ω0(l).

Both parameters µc(h, l) and κ(h, l) are estimated for voiced and

unvoiced regions of speech. In case of unvoiced regions the µc(h, l)
has no explanatory power as κ(h, l) → 0 indicates a large variance

in phase showing a uniform distribution. Thus, at unvoiced regions,

the phase estimate in (11) relies more on noisy phase than µc(h, l).

4. RESULTS

4.1. Experiment Setup

As experiment setup, we randomly chose 50 utterances spoken by 20

speakers (10 male and 10 female) from GRID corpus [29] corrupted

by white and babble noise from NOISEX-92 [30] at SNRs between

0 to 15 decibels. As the evaluation criteria, similar to [7, 26], we

report the perceived speech quality and speech intelligibility quanti-

fied by the perceptual evaluation of speech quality (PESQ) [31] and

the short-time objective intelligibility measure (STOI) [32], respec-

tively. The prior SNR at harmonics is provided by interpolation of

the SNR obtained by the amplitude estimator MMSE-STSA [33] and

the minimum statistics as the noise estimator [34]. The fundamental

frequency is estimated using PEFAC [35]. As analysis window, we

found that a Blackman window is advantageous as it exhibits a large

side-lobe rejection ratio, leading to the best performance. The frame

length is set to 24 ms. We chose a frame shift of 2 ms (R = 10) as it

allows for a more accurate von Mises parameter estimation.

4.1.1. Proof-of-Concept Experiment

The STFT phase exhibits no structure [26], therefore alternative

phase representations are required for qualitative evaluation of the

estimated phase versus the clean phase as reference. To this end, we

look at the following representations: 1) spectrogram demonstrating

the influence of replacing noisy phase with the modified phase spec-

trum, 2) group delay demonstrating the correctness of the estimated

phase across frequency showing a harmonic structure [36], and 3)

phase variance to assess the quality of the synthesized speech [22].

Figure 2 shows the graphical justification for the proof of con-

cept experiment carried out on a male utterance corrupted with

white noise at SNR = 5 (dB). From the spectrogram (top row) it is

observed that the spectral amplitude is enhanced after reconstructing

the phase-enhanced signal via overlap-and-add. This is justified

by the recovery of the harmonic structure observed in the phase-
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Fig. 2. Spectrogram (top), group delay (middle), and circular variance (bottom) shown for a male utterance corrupted with white noise at SNR = 5 (dB).
From left to right: noisy (unprocessed), MAP phase-enhanced, STFTPI [7] and clean (oracle). The noise reduction is achieved by phase-only enhancement.

enhanced signal similar to that existing in the clean phase. This

harmonic structure was lost in the noisy speech. The group delay

plot (middle row) justifies the recovery of the harmonic structure in

phase across frequency axis and is enhanced compared to the noisy

phase. The visualized improvement reported here is obtained due to

the proposed phase-only enhancement without an explicit employ-

ment of an amplitude enhancement scheme. Finally, the plots in

the bottom row show the circular variance plots confirming that the

proposed method successfully reduces the phase variance without

over-estimation at higher frequencies as in [7].

Both PESQ and STOI outcomes are shown at the top of each

panel in Figure 2. Comparing results versus STFTPI [7] and clean

phase reveals that some artificial harmonics are introduced by the

STFTPI at higher harmonics leading to some artifacts perceived

as buzzyness in the reconstructed signal. Similar observation was

reported in [3, 17]. The buzzy speech quality reduces the speech

intelligibility as justified by the degraded STOI, lower than noisy

signal. The proposed phase estimator, in contrast, balances a trade-

off between replacing the noisy phase with an estimated one and on

how much to rely on the noisy phase sampled at harmonics. The

trade-off leads to a joint improvement in the perceived quality and

intelligibility across SNRs as shown in Figure 3.

4.1.2. Perceived Quality and Speech Intelligibility

Figure 3 shows the delta improvement compared to the noisy input

in terms of the perceived quality and speech intelligibility. The re-

sults are averaged over utterances grouped to white and babble noise

scenarios. The results for unprocessed (noisy) and clean phase (ora-

cle) are shown for comparison purposes demonstrating the lower and

the upper bounds for the phase estimation performance, respectively.

As benchmark, we report the performance of the STFTPI [7] where

PEFAC [35] is used for fundamental frequency estimation.

As the input SNR is increased, the performance of the proposed

method asymptotically approaches to that provided by clean phase

known as the upper-bound phase estimation performance. For white

noise scenario, the performance of the MAP estimator is not sensi-

tive to the oracle knowledge of F0 and harmonic SNR. For babble

noise scenario, however, the additional improvement obtained by the

MAP phase estimator due to the oracle prior knowledge motivates to

use a more accurate, F0 and SNR estimator. In overall, the proposed

MAP phase estimator consistently improves both perceived quality

as well as speech intelligibility across all SNRs and noise types. This

is an interesting observation since the conventional amplitude-only

speech enhancement methods were previously reported to reduce the

speech intelligibility of the noisy speech [37].

The STFTPI method [7] improves PESQ at the expense of a con-

siderable reduction in the speech intelligibility compared to the noisy

signal. This can be explained by the introduced artificial harmonics

perceived as buzzyness mainly occurring at higher frequencies. This

is visually observed by comparing the last two plots shown in Fig-

ure 2. Similar observation was reported in [3, 17]. The artificial

harmonics produced by STFTPI are not available in the clean sig-

nal hence the speech intelligibility by STFTPI degrades. In contrast

to [7, 17], the proposed MAP phase estimator leads to a joint im-

provement in the perceived quality and speech intelligibility.
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Fig. 3. PESQ and STOI Improvement for (top) white (bottom) babble noise.

5. CONCLUSION

In this paper we derived a Maximum A Posteriori harmonic phase

estimator in single-channel speech enhancement. Our experiments

showed that when noisy phase is replaced by the proposed MAP

phase estimate, instrumental measures show joint improvement in

the perceived speech quality and speech intelligibility consistently

for various signal-to-noise ratios and noise types. Unlike the bench-

mark method, the proposed method is less sensitive to fundamental

frequency and relies on no voicing state decision which arguably is

erroneous at low signal-to-noise ratios and non-stationary noise.
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