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ABSTRACT

One of the main barriers in the deployment of speech emotion recog-
nition systems in real applications is the lack of generalization of the
emotion classifiers. The recognition performance achieved in con-
trolled recordings drops when the models are tested with different
speakers, channels, environments and domain conditions. This paper
explores supervised model adaptation, which can improve the per-
formance of systems evaluated with mismatched training and testing
conditions. We address the following key questions in the context of
supervised adaptation for speech emotion recognition: (a) how much
labeled data is needed for adaptation to achieve good performance?
(b) how important is speaker diversity in the labeled set? (c) can
spontaneous acted data provide similar performance than naturalistic
non-acted recordings? and (d) what is the best approach to adapt the
models (domain adaptation versus incremental/online training)? We
address these problems by using a multi-corpus framework where
the models are trained and tested with different databases. The re-
sults indicate that even small portion of data used for adaptation can
significantly improve the performance. Increasing the speaker diver-
sity in the labeled data used for adaptation does not provide signif-
icant gain in performance. Also, we observe similar performance
when the classifiers are trained with naturalistic non-acted data and
spontaneous acted data.
Index Terms: emotion recognition, supervised domain adaptation

1. INTRODUCTION
Emotion recognition from speech is an emerging research area due
to the clear benefits of emotionally aware interfaces in several appli-
cations, including intelligent tutoring system (ITS), entertainment,
call center, and instrumental tools for the diagnostic and prognostic
of mental health conditions. The performance of speech emotion
recognition systems strongly depends on the differences between
training and testing settings. Small differences in background noise,
microphone settings, dialects, different languages and speaker vari-
ations reduce the classification performance. Robustness and gener-
alization of emotion classifiers are key open challenges in the area
of affective computing [1].

Previous studies have proposed various approaches to increase
the robustness of speech emotion classifiers: collecting naturalistic
databases [2, 3], speaker normalization [4, 5, 6, 7, 8], robust feature
selection [9]. In addition to these research directions, an appeal-
ing solution is model adaptation where the classifiers are modified
to reduce the gap between training and testing settings. To classify
new data with good accuracy, a classifier needs to be trained with
enough labeled data, resembling the distribution of the target data.
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Instead of collecting and annotating extra data when the target do-
main changes, many machine learning studies have proposed trans-
fer learning schemes that use limited labeled data (supervised) or
unlabeled data (unsupervised) from the new task, to improve the per-
formance of the classifiers. These frameworks offer interesting solu-
tions for speech emotion recognition. This paper explores the ben-
efits of using classifiers pre-trained with available labeled data that
are adapted using supervised methods. We consider three emotional
databases, where two of them (IEMOCAP [10] and SEMAINE [2])
are used for training, and one for testing (RECOLA [11]).

While previous studies on speech emotion recognition have
started to consider model adaptation [12, 13, 14, 15], this paper
addresses key questions for supervised adaptation that remain open.
(a) How much labeled data is needed for adaptation to achieve good
performance? We address this question by comparing the classifica-
tion performance in terms of the amount of data used for adaptation.
We observe over 10% increase in performance even with a small
data set used for adaptation. (b) How important is speaker diversity
in the labeled set? We address this question by comparing two con-
ditions: using data from a small number of subjects, and using data
from multiple subjects. When we consider the same amount of data
for adaptation, we do not observe improvement in classification per-
formance by increasing the speaker variability. (c) Can spontaneous
acted data provide similar performance than naturalistic non-acted
recordings? We address this question by creating two classifiers
trained with acted (IEMOCAP [10]) and natural (SEMAINE [2])
spontaneous interactions. Both of these classifiers are adapted with
the same set. We observe very few cases where models originally
trained with natural recordings provide better performance, sug-
gesting that spontaneous acted recordings are valuable resources.
(d) What is the best approach to adapt the models? We address
this question by comparing domain adaptation for support vector
machine (SVM), and incremental/online adaptation of SVM. Both
approaches provide similar classification performance.

2. BACKGROUND AND RESOURCES
2.1. Relation to Prior Work
An important research direction in speech emotion recognition is im-
proving the generalization of the classifiers arising from having dif-
ferent training and testing conditions. These differences include mis-
matches in noise level, microphone settings, language, and speaker
variations. Schuller et al. [16] studied the detrimental effect of back-
ground noise and reverberated speech on emotion recognition per-
formance. They showed that optimizing the selected feature set is an
effective way to adapt to different noise conditions. Shami and Ver-
helst [17] conducted a multi-corpus study on emotion speech recog-
nition. They showed that cross-corpus testing resulted in drop in
performance. They proposed to merge the databases to train a clas-
sifier, achieving performance comparable to within-corpus results.
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One approach to reduce variability between training and testing
domains is feature normalization. Schuller et al. [4] used a simple
corpus-dependent normalization scheme to reduce domain variabil-
ity. They presented cross-corpora experiments, where normalizing
each corpus separately was effective. Speaker normalization is a
common approach to improve performance by attenuating speaking
variations from the feature set [1, 5]. Busso et al. [6, 7] proposed
the iterative feature normalization (IFN) algorithm that estimates the
normalization parameters by detecting neutral speech. The normal-
ization parameters are estimated over this neutral set, such that the
first and second order statistics of the acoustic features for neutral
speech are similar across speakers. The parameters are then applied
to the entire set. This approach was effectively used by Rahman and
Busso [8] to personalize an emotion classifier to a target user.

Model adaptation is another appealing solution to generalize an
emotion recognition system. Supervised learning relies on limited
labeled data from the new domain. Unsupervised learning does not
require extra labeled data. Zhang et al. [15] studied the effect of
using unlabeled data in a multi-corpus experiment. Working with
six databases, they merged three databases to build a baseline clas-
sifier. They used the models to predict the emotional content of two
different corpora. Then, they re-trained the classifiers with the five
corpora, where the predictions were used as actual labels. The mod-
els were evaluated on a different corpus, where this unsupervised
learning scheme achieved better performance than using the baseline
classifier only trained with the three original corpora. Using neural
networks, Deng et al. [12] presented a sparse autoencoder for feature
transfer learning that exploited the underlying structure in emotional
speech learnt from the labeled target data to reconstruct the source
data accordingly. Maeireizo et al. [13] used co-training to automat-
ically label spoken dialog data for an emotion detection problem,
showing that co-training is highly effective when combined with a
good set of features. Liu et al. [14] proposed an enhanced co-training
algorithm, where the classifiers represented two conditionally inde-
pendent attribute views. The approach showed promising results for
speech emotion recognition. This study focuses on transfer learning
under supervised domain adaptation, where labeled data is available.

2.2. Adaptation Schemes
There are several methods for supervised adaptation that can be used
based on the framework used for classification. For example, for
Gaussian mixture models (GMMs) the adaptation schemes based on
maximum a posteriori (MAP) adaptation [18] and Maximum Likeli-
hood Linear Regression (MLLR) [19] are effective and widely used
in speaker, language, and speech recognition. Recent studies have
proposed various solutions for model adaptation for support vec-
tor machine (SVM). While SVM has been widely used in emotion
recognition, we are not aware of any of those adaptation methods
employed in the field of speech emotion recognition. This study ex-
plores two alternative approaches to adapt a SVM using limited la-
beled data: an adaptive SVM algorithm [20] and incremental SVM
training method [21].
Adaptive SVM: This work uses the adaptive SVM algorithm pro-
posed by Yang et al. [20] in an attempt to transform existing SVM
classifiers into a new effective SVM classifier that would work on a
new dataset with limited number of labeled data. The approach aims
to minimize both the classification error over the training examples,
and the discrepancy between the originals and adapted classifier. The
new optimization problem seeks a decision boundary close to that
of the classifier trained from the source domain, while managing to
separate the new labeled data from the target domain.
Incremental SVM: Incremental SVM classifiers were introduced to

reduce batch SVM memory and computational requirements, espe-
cially for very large data sets. One of the useful features of incremen-
tal learning is the ability to add more training data. These approaches
employ incremental learning techniques, where only a subset of the
data is considered at each step of the learning process, discarding
old data while maintaining the support vectors learned in previous
steps [22, 23]. Shalev et al. [24] proposed and analyzed a simple and
effective stochastic sub-gradient descent algorithm for solving the
optimization problem imposed by SVMs. Each iteration of the algo-
rithm operates on a single training example selected at random. By
selecting the training examples at random, the authors demonstrated
that the solution converges in probability regardless of the data used
in the classification problem.
2.3. Databases
The study relies on a multi-corpus framework. We assume that two
English emotional databases are available to train emotional classi-
fiers: the IEMOCAP [10] and SEMAINE [2] database. For testing,
we use the RECOLA database [11], which was recorded in French.
We briefly describe these corpora.
IEMOCAP: The USC IEMOCAP database contains approximately
12 hours of audio-visual data recorded from five male and five fe-
male actors [10]. It contains detailed motion captured information
of the recordings that are carefully synchronized with the audio (this
study uses only the audio). The goal of the data collection was to
elicit natural emotions within a controlled setting. This goal was
achieved with two elicitation framework: scripts, and improvisation
of hypothetical scenarios. These approaches allowed the actors to
express spontaneous emotional behaviors driven by the context (as
opposed to read speech displaying prototypical emotions). Several
dyadic interactions of approximately five minutes were recorded,
which were manually segmented into turns. Each turn was annotated
into ten categorical emotions (e.g., anger, happiness, or neutrality –
three evaluators per turn), as well as dimensional scores (valence,
activation, dominance – two evaluators per turn). This study relies
on the dimensional scores which takes values between one and five.
We consider 6829 turns recorded by the 10 actors.
SEMAINE: The SEMAINE database is an audiovisual database
with natural emotional displays [2]. The corpus includes sessions
recorded from two individuals, an operator and a user, interact-
ing through teleprompter screens from two different rooms. The
emotions were elicited with the sensitive artificial listener (SAL)
framework, where the operator assumes four personalities aiming
to elicit positive and negative emotional reactions from the user.
The sessions were emotionally annotated by 6-8 raters. Instead of
assigning global labels to the speaking turns, the evaluators pro-
vided time-continuous emotional traces using the FEELTRACE
toolkit [25]. As the evaluators watch the recordings, they move the
mouse cursor over a graphical user interface (GUI), where the axes
represent specific emotional attributes. The interface records the po-
sition of the cursor, providing a continuous profile, or trace, for that
emotional dimension. Among other descriptors, the perceptual eval-
uation considered the dimensions activation (calm versus active),
valence (negative versus positive), control (weak versus strong) and
expectation (predictable versus unexpected) [26]. This study fo-
cuses on activation and valence, which are the most commonly used
emotional dimensions. This study uses 2315 turns from 10 speakers
(users) interacting with the operators.
RECOLA: The RECOLA corpus consists of dyadic interactions
where the participants engaged in video conference while complet-
ing a task requiring collaboration [11]. Each participant received a
questionnaire to evaluate his or her current emotional state by using
Self-Assessment Manikin (SAM) [27]. The participants of a team
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IEMOCAP model Semaine model within Corpus performance IEMOCAP model without adaptation Semaine model without adaptation

Fig. 1. Classification performance using supervised adaptation of SVM proposed by Yang et al. [20].

were then introduced to each other. They were separated into differ-
ent rooms, where they were told that the experiments was to under-
stand communication between people by using computer-supported
tools. The data comprises different multimodal data (i.e., audio,
video, ECG and EDA) that were continuously and synchronously
recorded. 46 participants took part in the data collection. All the
subjects are native French speaking. According to the self-reports
filled by the subjects, only 20% of the participants knew well their
teammate. Only the first five minutes of each interaction was kept
to ease the emotion annotation process. Six annotators continuously
evaluated the emotional content using two dimensions: arousal and
valence. Other social behavior labels were also collected. This
study uses annotated emotional data from 23 speakers interacting
with their teammate. In total, we consider 899 turns.

The SEMAINE and RECOLA databases have time-continuous
emotional traces. To derive a single score for each speaking turn, we
assign the average value across the duration of the turn and across
evaluators. We repeat this approach for arousal and valence.

3. EXPERIMENTS
We describe the proposed framework to explore the optimum size,
and variety of the labeled data used for adaptation, the nature of the
training corpus, and best approach to incorporate new labeled data.

3.1. Classification Problem and Experimental Settings
The evaluation consists in detecting low and high level of arousal
and valence. For these attributes, we separately normalized the
values, per corpora, using z-normalization. We create the negative
class (low arousal or valence) with turns where the normalized val-
ues are less than zl = �0.3. We define the positive class (high
arousal or valence) with turns when the normalized values are
higher than zh = 0.3. The samples lying between these thresholds
are discarded to create good separation between classes. With these
thresholds, the number of turns considered for activation/valence
are 5,266/5,073 for IEMOCAP, 1,734/1,680 for SEMAINE, and
700/677 for RECOLA.
Size of the labeled data: The RECOLA database is used to evaluate
the classification performance. We split this corpus into two speaker-
independent partitions, one for adaptation and one for testing (all
the data for one subject is either in the adaptation or testing sets).
The partition is implemented with a leave-one-speaker-out (LOSO)

cross-validation approach, where, in each fold, only one out of 23
subjects is used for testing. The results are reported by averaging
the classification performance across the 23 folds. We sequentially
increase the size of the labeled data to understand the optimum size
needed for adaptation (see the x-labels in Figures 1 and 2). Since
data from 22 subjects is potentially available for adaptation, we eval-
uate 20 different partitions per experiment (i.e., if we adapt the mod-
els with data from two subjects, we randomly select 20 different
pairs within the 22 remaining subjects, without repetitions).
Speaker variety of the labeled data: For a given size of the adapta-
tion set, we evaluate two conditions to assess the benefits of increas-
ing the speaker diversity in the adaptation set (1) we create the adap-
tation set from a limited number of speakers, (2) we create the adap-
tation set at random from all the subjects in the RECOLA database
that are not in the testing set. For example, consider Figures 1(a) and
1(c). Using eight subjects (Fig. 1(a)) can be directly compared with
using 35% of the corpus for adaptation (Fig. 1(c)).
Acted versus natural database: Across conditions, we train two dif-
ferent classifiers using either the IEMOCAP (i.e., acted) or the SE-
MAINE (i.e., natural) corpus. These classifiers are then adapted us-
ing the RECOLA database.
Adaptation scheme: We evaluate the adaptive SVM (Fig. 1) and on-
line SVM (Figs. 2) frameworks. For the adaptive SVM framework,
we train a linear kernel SVM classifier implemented using LIB-
SVM [28]. This classifier is later modified with the adaptive SVM
framework proposed by Yang et al. [20]. The online SVM classifier
was implemented using the VLFeat library [21], which provides the
stochastic sub-gradient descent algorithm described in Section 2.2.

We provide two baseline classifiers. First, we estimate the
within-corpus performance on the RECOLA database. For consis-
tency, we use LOSO cross-validation approach (i.e., 22 training, 1
testing), where the results are the average values across the 23 folds.
The second baseline corresponds to training with either the IEMO-
CAP or SEMAINE corpus and testing with the RECOLA database
without adaptation (see straight lines in Figs. 1 and 2).

3.2. Acoustic Features
The evaluation considers the feature set proposed for the Speaker
State Challenge in Interspeech 2011 [29]. The set includes 4,368
features derived from spectral, prosodic and voice quality features.
For each database, we normalize the features using z-normalization.
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Fig. 2. Classification performance using incremental/online training implemented with the VLFeat library [21]

Given the dimension of the feature vector, we reduce the set us-
ing a two-layer feature selection approach. In the first layer, we use
correlation attribute evaluation using a ranker search method to limit
the set to 500 features. The approach selects the features with the
highest correlation with the class label. This approach efficiently se-
lects candidate features. The second layer reduces further this set
to 50 features by using correlation feature selection (CFS). This
feature selection approach is implemented with a greedy stepwise
search method, where new features are added only if they are not
highly correlated with previously selected features. This approach
is efficient and general, since it does not depend on the performance
of any classifier. We separately implement this approach for the SE-
MAINE and IEMOCAP databases for arousal and valence. The only
setting where the RECOLA turns are used for feature selection is for
the within-corpus classifier (upper bound performance).

4. RESULTS
Figures 1 and 2 give the classification results across settings. This
section discusses our research questions.

4.1. How much labeled data is needed for adaptation?
The baseline classifiers without adaptation are significantly lower
than the within-corpus classification performance. For arousal, Fig-
ures 1(a) and 1(c), and Figures 2(a) and 2(c) show significant im-
provements even when we only use data from two subjects for adap-
tation (⇠9% of the data). The one-tailed population proportion test
indicates that these differences are significant (p-value < 0.05). For
valence, the improvement in performance is more gradual as we in-
crease the adaptation set. When using only two subjects, we only
observe significant improvements over the model without adaptation
for the SEMAINE database. For the IEMOCAP corpus, we need to
consider more data in the adaptation set.

When we compare the classification performances using an
adaptation set with either eight subjects (⇠35% of the data) or 22
subjects, we do not observe significant differences for activation and
valence (one-tailed population proportion test, asserting significance
at p-value=0.05). Using 35% of the data is enough to adapt models.

4.2. How important is speaker diversity in the labeled set?
To address this question, we estimate the hypothesis test for matched
pairs, where the matched condition is the size of the adaptation set.

We compare the classification results shown in Figures 1(a) and 1(c);
Figures 1(b) and 1(d); Figures 2(a) and 2(c); and Figure 2(b) and
2(d). In each of these cases, we do not observe any significant differ-
ence (asserting significance at p-value=0.05). Interestingly, speaker
variety is not a dominant factor in selecting the adaptation set.

4.3. Can spontaneous acted data provide competitive results?
Without adaptation, the SEMAINE model provides better perfor-
mance for arousal, while the IEMOCAP model provides better per-
formance for valence. However, the classification performances are
very similar when these models are adapted using the RECOLA
database. The hypothesis test for matched pairs shows that there are
no significant difference in performance for arousal and valence (the
matched condition is the training data). With model adaptation, this
result suggests that a classifier built with spontaneous acted data can
perform as well as a classifier built with natural emotional databases.

4.4. What is the best approach to adapt the models?
Finally, we compare the performance of the adaptation schemes (Fig.
1 versus Fig. 2). We estimate the hypothesis test for matched pairs
across conditions where the matched condition was the adaptation
scheme. The test reveals that both methods provide similar perfor-
mance (asserting significance at p-value=0.05).

5. CONCLUSIONS

This work explores important open questions about supervised adap-
tation in speech emotion recognition. We observe significant im-
provement in classification performance, even when only 9% of the
data is used for adaptation. The study demonstrated that speaker di-
versity in the adaptation set is not a dominant factor. Furthermore,
classifier models built with spontaneous acted data is a viable option
when the models are adapted. Finally, using online training yields
similar performance to a model adaptation approach.

The study demonstrates the importance of model adaptation. We
are currently exploring the use of unsupervised model adaptation
coupled with feature normalization. We expect that combining both
approaches will lead to emotion recognition systems with better gen-
eralization against train and test mismatches.
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