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ABSTRACT

The parametric Bayesian Feature Enhancement (BFE) and a data-
driven Denoising Autoencoder (DA) both bring performance gains
in severe single-channel speech recognition conditions. The first can
be adjusted to different conditions by an appropriate parameter set-
ting, while the latter needs to be trained on conditions similar to the
ones expected at decoding time, making it vulnerable to a mismatch
between training and test conditions. We use a DNN backend and
study reverberant ASR under three types of mismatch conditions:
different room reverberation times, different speaker to microphone
distances and the difference between artificially reverberated data
and the recordings in a reverberant environment. We show that for
these mismatch conditions BFE can provide the targets for a DA.
This unsupervised adaptation provides a performance gain over the
direct use of BFE and even enables to compensate for the mismatch
of real and simulated reverberant data.

Index Terms— robust speech recognition, deep neuronal net-
works, feature enhancement, denoising autoencoder

1. INTRODUCTION

Over the last few years, the usage of speech recognition in consumer
electronics changed dramatically. Voice controlled personal assis-
tants and systems demand for hands-free usage with larger distances
between the speaker and usually a single microphone. These condi-
tions challenge automatic speech recognition (ASR) systems to be-
come more robust against environmental influences like noise and
especially against reverberation effects.

The recently held REVERB challenge [1] gave some insights on
how ASR systems can become more robust. It revealed that almost
all of the best performing systems employ a Deep Neural Network
- Hidden Markov Model (DNN-HMM) acoustic model. Addition-
ally, it showed the effectiveness of data-driven feature enhancement
methods like Non-negative Matrix Factorization (NMF) [2], a De-
noising Autoencoder (DA) [3] or even a Deep Recurrent Neural Net-
work (RNN) [4]. Other systems used parametric feature enhance-
ment methods, e.g. Cross Transform [5] and the Weighted Predic-
tion Error (WPE) algorithm [6]. But the results show a weakness of
current DNN respectively data-driven approaches: As the channel
mismatch between the training data and the evaluation data becomes
larger, the performance drops significantly. A special case is the
performance decrease when going from simulated reverberant data
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to real reverberant data which is visible throughout all approaches.
While a certain performance loss due to a mismatch condition is ex-
pected to happen for all systems, the data-driven systems do not yet
provide a means to adjust them to new conditions using no or very
few data. They have to be trained on conditions similar to the ones
at decoding time, while parametric methods can be adjusted to new
conditions just by an appropriate parameter setting.

We therefore investigate, if it is possible to use a parametric fea-
ture enhancement to adapt a data-driven approach to unseen con-
ditions. For our investigations we focus on single-channel audio
and choose the data-driven DA [7] and the parametric Bayesian Fea-
ture Enhancement (BFE) [8, 9]. We look at the influence of differ-
ent mismatch situations on the recognition performance which arise
from different room sizes (reverberation time), different distances
between the speaker and microphone and differences between simu-
lated reverberant data and actually recorded reverberant data.

In the next section, we describe the models used for feature en-
hancement. Afterwards, we give an overview over the backend and
how it is combined with the two enhancement methods. The dataset
is described in Sec. 4. We present the results in Sec. 5 and conclude
in Sec. 6. We end by relating this paper to previous work and giving
an outlook for further research in Sec. 7

2. FEATURE ENHANCEMENT

2.1. Bayesian Feature Enhancement

In a reverberant environment the discrete-time microphone signal
y(k) results from a convolution of the clean speech signal x(k) with
the acoustic impulse response (AIR) h(k) of finite length Lh and
additional noise n(k)

y(k) =

Lh−1∑
l=0

h(l)x(k − l) + n(k). (1)

We then estimate the sequence of clean Log Mel Power Spectral Co-
efficients (LMPSCs) x1:M from the observed sequence y1:M . The
estimation is carried out in a Bayesian way [8, 10]. We introduce a
state vector

zm :=
(
(xm)T , . . . , (xm−Lc+1)

T , (nm)T
)

(2)

containing the last Lc LMPSCs of the clean speech and the current
noise LMPSCs. Its a posteriori probability density function (PDF)
p(zm|ym) is computed recursively with a prediction step

p(zm|y1:m−1) =

∫
p(zm|zm−1,y1:m−1)p(zm−1|y1:m−1)dzm−1
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and an update step

p(zm|y1:m) ∝ p(ym|zm,y1:m−1)p(zm|y1:m−1) (3)

The prediction step requires an a priori model p(zm|zm−1,y1:m−1)
for the clean speech and noise LMPSCs. We employ a switching
linear dynamical model (SLDM) for the speech and assume the
noise signal to be a realization of a stationary white Gaussian
stochastic process. The update step calls for an observation model
p(ym|zm,y1:m−1) which we choose to be a multivariate Gaussian
with time-variant mean vector and covariance matrix.

The observation model relates the LMPSCs of clean speech and
noise to the LMPSCs of noisy reverberant speech. As such, it re-
quires a model of the AIR. In [10] we proposed to use the model by
Polack [11]. This model assumes the AIR to be a realization of a
white Gaussian noise process with an exponentially decaying enve-
lope. Although only a coarse approximation to a real AIR, it has the
advantage that it is characterized by a single parameter: The time
constant of the exponential decay. This time constant is proportional
to the room reverberation time (T60), which is the time it takes until
the energy in the tail of the AIR decays to−60 dB of the total energy.
It depends on the room properties and is independent of the distance
between the speaker and the microphone. The parameter can be es-
timated blindly from reverberant speech with a precision well below
±100 ms (e.g. [12][13]) which is sufficient for our model to deliver
good results.

Note that the direct signal and early reflections are not modelled
well with this coarse model. BFE has been designed with distant
speech in mind and it is to be expected that it is not that effective if
the distance between the speaker and the microphone becomes small.

For an in-depth description of this approach we refer to [8, 9].

2.2. Denoising Autoencoder

A (stacked) DA is a network with multiple encoding layers, followed
by one affine linear decoding layer when dealing with real-valued
data like speech features in this case [7].

The encoding layers have the form

hi(zi) = s (Wizi + bi) (4)

zi is the input to the i-th hidden layer, Wi its weight matrix and bi

its bias vector. s () is a non-linearity like a sigmoid, tanh or ReLU.
The goal of the DA is to reconstruct clean (speech) features x

from corrupted input features x̃. Here, the corruption is caused by re-
verberation and additional background noise. When providing these
corrupted features as the input z0 to the first layer, we want the out-
put x̂ to be highly similar to the clean features. To learn the required
mapping between noisy and clean features, a loss function describ-
ing the mean squared error ||x̂− x||2 is minimized during training.

Because this loss function is highly non-linear in the weights of
the network, stochastic gradient descent is used to find a solution
for this optimization problem. One which generalizes well needs
a good initialization of the weights Wi. This is achieved with a
pre-training. The probably most common approach for this is the
one presented by Hinton et al. [14]. In this paper, we use another
approach, namely greedy supervised pre-training [15] with the ex-
tension of corrupting the input for the trainable layer as described
in [16]. The main reason for this choice is that the latter requires
no additional generative model and uses the same function as the
fine-tuning. Nevertheless, the results are comparable.

We pre-train every layer for 15 epochs with a learning rate of
0.1 while fixing the weights of the already trained layers. During

pre-training the clean corpus is used and the input for the trainable
layer is corrupted by randomly setting 50% of it to zero. Afterwards
we perform fine-tuning with an initial learning rate of 0.1 and a New-
bob learning strategy. The input is the multicondition and the output
the clean training data. Note that we do not apply additional corrup-
tion during the fine-tuning since the multicondition data is already a
corrupted version of the training data.

The autoencoder is implemented using Theano [17] and features
3 hidden layers with 2048 sigmoid units. The input spans over 7
consecutive MFCC frames with 13 components. The output also
consists of 7 frames during training. For the decode, we average over
all seven appearances for every single frame as proposed in [18].

2.3. Adapting the DA with BFE

As mentioned in the introduction and as the results will show, the
performance of the DA (and DNN alone) drops significantly when
there is a larger mismatch between the training data and the data to
be decoded. Therefore we adapt the DA to the new condition: We
first enhance the data to be decoded with BFE, resulting in a cleaned-
up version of the MFCC features. These are then used as a target to
retrain the DA with an initial learning rate of 0.01. After this process,
the DA can be used to enhance the data for the new condition.

Note that this approach is not limited to BFE but can be used
with any parametric feature enhancement method, making it possible
to adapt a DA to new environmental conditions.

3. BACKEND

For the backend we use the freely available RASR toolkit [19, 20].
We chose a hybrid approach for the recognition, where a DNN cal-
culates the posteriors for each generalized triphone state. The num-
ber of decision tree based generalized triphone states is chosen to be
3000 for every setup. The network itself consists of 6 hidden layers
with 2048 sigmoid units each. It has a factorized linear bottleneck
structure where each weight matrix is factorized into two matrices of
dimensions 2048×256 and 256×2048. This corresponds to adding
an additional linear hidden layer with 256 units between each pair of
hidden layers. Such a structure reduces the number of free parame-
ters, accelerates the decoding and training process and was found to
be effective against overfitting [21, 22].

To train the network, we first initialize the weights with a greedy
layer-wise pre-training. Each layer is pre-trained for 2 epochs with
the learning rate set to 0.016. Afterwards, the network is fine-tuned
with an initial learning rate of 0.016. The Newbob strategy is used
to control the learning rate for the following epochs. The batch
size is set to 512. Instead of stochastic gradient descent, we use an
optimization algorithm called Mean-Normalized Stochstic Gradient
Descent (MN-SGD). This shows faster convergence properties and
enables the training of a factorized network without further decom-
position methods [22]. Finally, we decode a held-out set with the
weights gained from each iteration. The weights with the best WER
on the held-out set are then used for the experiments. For decoding,
we use the bigram language model supplied with the database (see
Sec. 4).

3.1. Combining BFE and the DNN backend

We also experimented with a combination of BFE with a DNN back-
end, without a DA. The BFE enhanced features are used as the input
for the DNN trained on the clean training data. Though we tried
different setups (DNN trained on multicondition, DNN retrained on
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BFE features), the described method delivered the best results. Since
the BFE is a parametric model, we also have to determine its param-
eters. As mentioned before, the crucial parameter is the reverbera-
tion time (T60). For the SIMDATA set, the parameter is known (see
Sec. 4). For the REALDATA set we perform a grid search to find the
best parameter. We also confirmed the parameters for the SIMDATA
using this technique. But again, this parameter could also be de-
termined in an unsupervised fashion from the single-channel speech
input. The SLDM necessary for the BFE is trained on the clean ut-
terances of the training set.

3.2. Combining the DA and DNN backend

For the combination of the DA with the DNN backend, we take the
DNN trained on the clean data and retrain it with the DA output of
its training data and an initial learning rate of 0.01. In contrast to [3],
this method delivered the best results for us. But the results without a
retraining are only slightly worse. This indicates that the DA outputs
features similar to clean ones, but apparently with small differences.
The retraining allows the DNN to adapt to these.

For the adapted DAs we use the DNN trained on clean data.

4. DATASET

4.1. Evaluation set

Experiments are carried out on the datasets SIMDATA and REAL-
DATA from the REVERB Challenge [1]. The vocabulary size is 5 k.

For the SIMDATA set utterances by 28 different speakers are
taken from the WSJCAM0 corpus [23] and convolved with three
different room impulse responses (RIRs). Noise is added at a signal-
to-noise ratio of 20 db. The rooms are named Room1, Room2 and
Room3. Additionally, there are two distances between the micro-
phone and the speaker: 50 cm for the near condition and 200 cm for
the far condition. For each condition there are 363 utterance and 6 k
words.

Table 1 shows two important acoustic parameters for the dataset.
The first one is the C50 parameter (Clarity index). It describes the ra-
tio between the early signal energy (< 50ms) and the rest and is thus
related to the distance between the speaker and the microphone. The
second parameter is the reverberation time T60 (compare Sec. 2.1).

The REALDATA set consists of 372 utterances with 6.1 k words
in total. The utterances are from the MC-WSJ-AV corpus [24] and
spoken by 10 different speakers. These are a set of WSJCAM0 utter-
ances rerecorded with real speakers in a noisy and reverberant room.
The set is also divided into a far and a near set but the distances are
∼ 100 cm respectively ∼ 250 cm this time.

4.2. Training set

The training set of the WSJCAM0 corpus is used. In the case
of clean training, the 7861 utterances by 92 speakers are left un-
touched. For the multicondition training the utterances are convolved
with RIRs from up to three different room sizes (small, medium and
large) and background noise with a SNR of 20 dB is added. These
RIRs are different from the ones used to generate SIMDATA, but
have comparable room reverberation times. Note that the RIRs
change from one utterance to the other in the same order, so the size
of the training set remains the same for all experiments and there
is an equal number of utterances with different RIRs. The same
acoustic parameters as for the evaluation set are shown in Table 1.

Distance C50 T60

Tr
ai

ni
ng

Room1 near 29 - 31 dB
250msfar 21 - 22 dB

Room2 near 14 - 17 dB
500msfar 6 - 7 dB

Room3 near 14 - 16 dB
700msfar 6 - 7 dB

E
va

lu
at

io
n Small near 25 - 30 dB ∼ 250msfar 19 - 21 dB

Medium near 14 - 18 dB ∼ 500msfar 6 - 10 dB

Large near 12 - 16 dB ∼ 700msfar 4 - 7 dB

Table 1. Acoustic parameters for the different conditions.

5. RESULTS

Table 2 summarizes the results obtained with different training
conditions on SIMDATA and REALDATA. The respective training
condition is denoted as a subscript of the model. DA+DNNLargeFar

means for example that only the RIR of the large room with a distant
speaker is used1. If no distance is denoted, both, near and far, have
been included. Further, MC (multicondition) includes all conditions
and Clean are the clean training utterances.

5.1. Baseline

We start by discussing the baseline results for each model in the
first five rows of Table 2. The combination of the DA and the DNN
backend outperforms the other setups in every single condition when
trained with full multicondition data (DA+DNNMC). It also slightly
improves the results when trained on clean data only (DA+DNNClean)
compared to DNNClean. Additionally, the severe performance degra-
dation caused by a channel mismatch becomes obvious. The word
error rate (WER) doubles for more reverberant conditions when the
model is trained with clean data only. In this case, BFE significantly
improves the performance, achieving results competitive to DNNMC

for far conditions and even outperforming it for the REALDATA set.
Only for near conditions it breaks down for the reason described in
sec. 2.1.

5.2. DA and DNN with channel mismatch

Next, we look at the results for a DNN and a DA+DNN for different
channel mismatch conditions. This is the second block of Table 2
If the models have only seen reverberant speech (·LargeFar) the WER
increases significantly for conditions with less reverberation. If they
have only seen slightly reverberated speech (such as ·Small), the per-
formance decreases for highly reverberated speech. But reverbera-
tion is not the only important mismatch. Performance degradation
due to a mismatch in the C50 parameter is also noticeable. On the
other hand, the results show that there is some tolerance for the case
where the model saw reverberated speech but with a different rever-
beration time (·Medium vs. ·Large). Additionally the DA is again able to
increase the performance in all but one case (DA+DNNSmall), mostly
by a significant margin. It makes it possible to use only the data from
the large room for training and achieve better results than the model

1Although not listed in the results, we also considered MediumFar, Medi-
umNear, SmallFar and SmallNear, but no new insights can be gained from
these setups.
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Model
SIMDATA REALDATA

Room 1 Room 2 Room 3 Avg. near far Avg.
near far near far near far near far

DNNClean 15.6 22.5 48.6 80.2 57.7 86.4 40.6 63.0 87.1 83.0 85.0

DNNMC 18.2 18.4 21.5 32.3 25.7 37.0 21.8 29.2 52.9 49.7 51.3

BFE+DNNClean 19.8 17.4 30.0 29.0 42.2 43.8 30.7 30.0 48.2 47.2 47.7

DA+DNNClean 15.3 22.4 46.9 79.1 54.3 85.7 38.8 62.4 83.4 80.6 82.0

Baseline

DA+DNNMC 14.7 15.6 16.6 26.4 20.8 31.3 17.4 24.4 44.3 45.2 44.8

DNNSmall 16.2 18.0 24.8 56.3 31.3 63.9 24.0 46.1 71.4 69.0 70.2

DA+DNNSmall 13.3 14.4 24.3 63.9 31.7 70.2 23.1 49.5 72.4 72.8 72.6

DNNMedium 17.8 18.2 25.2 37.2 27.3 38.4 23.4 31.2 53.4 50.6 52.0

DNN+DAMedium 14.6 16.2 22.8 33.8 23.7 32.8 24.5 29.9 52.3 50.0 46.5

DNNLarge 20.5 22.2 23.7 30.9 29.3 36.6 24.5 29.9 52.3 50.0 51.1

DA+DNNLarge 15.6 17.5 16.8 24.4 21.1 29.6 17.9 23.8 43.4 43.2 43.3

DNNLargeFar 40.0 34.3 39.5 38.0 40.9 39.9 40.1 37.4 55.0 52.2 53.6

DA+DNNLargeFar 25.7 23.4 30.3 31.6 31.7 32.0 29.2 29.0 44.3 44.4 44.4

DNNLargeNear 16.9 18.2 25.2 47.2 29.0 50.7 23.7 38.7 63.3 57.7 60.5

Mismatch

DA+DNNLargeNear 13.3 16.0 21.8 43.7 23.2 44.8 19.4 34.8 55.9 53.4 54.7

DA+DNNSim
Small 18.6 18.7 22.4 29.4 28.4 41.9 23.1 30.0 48.2 47.8 48.0

DA+DNNSim
LargeFar 20.8 20.7 24.4 29.5 29.6 41.2 24.9 30.3 48.0 48.2 48.1

DA+DNNSim
Clean 18.4 18.6 24.1 32.1 29.3 43.7 24.0 31.5 51.9 50.7 51.3

DA+DNNReal
Clean 22.7 24.2 32.3 46.4 36.8 54.4 30.6 41.7 45.7 46.1 45.9

Adapt

DA+DNNReal
MC 23.6 23.7 26.3 34.4 30.7 43.4 26.9 33.8 42.0 41.0 41.5

Table 2. Word error rates for SIMDATA and REALDATA for different system combinations and training data. The training condition is
denoted as a subscript. In case of adaptation, the data used for adaptation is denoted as a superscript.

trained with all conditions (DA+DNNLarge vs. DA+DNNMC). Note
that there is no mismatch for BFE since it is a parametric model and
can be adjusted to new conditions. All results must be compared to
the baseline (BFE+DNNClean).

5.3. Adaption with BFE

Finally, we show how a parametric method can be used to adapt the
DA to unseen conditions, leading to a significant WER reduction.
We conduct two different adaptations. One is an adaptation to the
SIMDATA (superscript Sim), the other is an adaptation to the REAL-
DATA (superscript Real). The first one is carried out using all sets of
the SIMDATA, while the later one uses all sets of the REALDATA.

The last block of Table 2 shows the results for different adapted
models. The first three rows are related to SIMDATA where one
model has only seen slightly reverberated speech, one only highly
reverberated far speech and one no reverberated speech at all. Re-
training these models brings a significant gain compared to the re-
sults with the unadapted models. The biggest improvement can be
seen for DA+DNNClean (vs. DA+DNNSim

Clean), with a relative WER re-
ducion of nearly 50%. Importantly, all adapted models deliver better
results than the BFE baseline. Especially the ability to improve fea-
tures for the near condition remains untouched. This means that
the DA does not just learn the same mapping the BFE performs but
rather keeps a part of its original mapping while adjusting it to the
new condition. Also, even though adapted with SIMDATA only, the
gain is also visible for the REALDATA set. This indicates that the DA
still generalizes instead of only working on the adapted condition.

The last two rows show an adaptation with REALDATA. Again,
the performance increases significantly. Even more interesting, the
adapted model DA+DNNReal

MC outperforms its unadapted equivalent
DA+DNNMC. This shows, that the proposed adaptation is able to

reduce a mismatch between simulated and real reverberant data.

6. CONCLUSIONS

The combination of a DA and a DNN delivers good performance
when the conditions at decode time have been included in the train-
ing data. It can even compensate for a mismatch in reverberation
time to a certain extend. But when the mismatch becomes too large,
the WER grows quickly. BFE on the other hand can be adjusted to
unseen conditions by parameter selection, though the performance is
behind the one a DA can achieve in a matched condition. But while
it is possible to avoid a mismatch caused by the acoustic proper-
ties of the room and the speaker position by just generating enough
artificially reverberated training data using different RIRs, there is
still a gap between real recordings and simulated data. The results
show that BFE as a parametric method can produce cleaned-up fea-
ture vectors which serve as targets for the DA for an unsupervised
adaptation to the decoding conditions, bridging that gap.

7. RELATION TO PRIOR WORK AND OUTLOOK

This work builds on the DA [3, 16, 18, 25] and BFE [8, 9] as fea-
ture enhancement techniques. It also uses recent advancements in
the acoustic modeling for the backend [19, 22]. We propose to make
use of the advantages of both feature enhancement techniques: The
possibility to be adjusted to new conditions of a parametric model
(BFE) and the modelling power of a neural network (AE) by us-
ing the BFE to adapt the DA. In future research, we will try other
parametric methods as we suspect that this is not limited to BFE.
Further, a combination of different parametric methods for the adap-
tation might bring an additional performance gain.
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