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ABSTRACT

In this work, multiple hierarchical language modeling strate-
gies for a zero OOV rate large vocabulary continuous speech
recognition system are investigated. In our previously pro-
posed hierarchical approach, a full-word language model and
a context independent character-level LM (CLM) are directly
used during search. The novelty of this work is to jointly
model the character-level prior and the pronunciation proba-
bilities, to introduce across-word context into the character-
level LM, and to properly normalize the character-level LM
using prefix-tree based normalization for the hierarchical ap-
proach. Significant reductions in-terms of word error rates
(WER) on the best full-word Quaero Polish LVCSR system
are reported.

Index Terms— OOV, hierarchical, prefix-tree, LVCSR
1. INTRODUCTION

Although modern state-of-the-art decoders handle large vo-
cabularies, LVCSRs still suffer from significant OOV rates
and data sparsity [1, 2]. A straight-forward approach would
be to increase the full-words to decrease the OOV rate, with
the cost of huge search space. But this might not guaran-
tee a decrease in WER. Alternatively, even with the inclusion
of sub-lexical vocabularies, a zero OOV rate is not guaran-
teed unless chosen sub-lexical units cover all possible words
[2, 3, 4]. Thus, any non-zero OOV rate LVCSR system, in-
dependent of the size or the type of the vocabulary fails to
recognize a fraction of the OOVs as their phoneme sequence
to word mapping is not present in the lexicon.

One of the solutions to address this problem could be to
use a single hybrid LM (HLM) containing a mixture of full-
words and characters to satisfy the condition of zero OOV
rate. However, the recognition system most likely tends to
produce higher recognition errors due to more acoustic con-
fusions introduced by characters [5, 6]. In the literature,
character-only LMs (CLMs) using different smoothing meth-
ods, are applied in [7]. Different hierarchical models are de-
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scribed in [8, 9, 10]. Multiple class-based LMs are used along
with full-word LM to detect OOVs [8]. Similarly, a full-word
LM and a CLM are used for a OOV recognition for LVCSR
in [9] and later applied for hand-writing recognition [10].

In a hierarchical approach, a full-word LM and a CLM
are directly used in search for recognizing in-vocabulary (IV)
words and OOV words separately within a WFST framework,
unlike the hybrid approach [9]. Thus, the recognition sys-
tem should be able to output sequences of characters in places
of OOVs. The hierarchical approach also provides a config-
urable framework to use multiple level CLMs, as we demon-
strate in this paper. However, a composite network consisting
of both the full-word LM and CLM could also be viewed as
a single composite LM network during search. This implies
that the composite LM network could be normalized at se-
quence level. Precisely, if a CLM provides zero-probability
mass for the IV character-level sequences and non-zero prob-
abilities for the OOV character-level sequences, then the com-
posite network satisfies the condition for sequence normaliza-
tion. In the literature, a prefix-tree based approach has been
addressed to solve this type of problem for a hand-writing
recognition task and only perplexities are reported in [11].
In this work, we propose a similar prefix tree approach in
conjunction with our previously proposed approach [9] for
LVCSR and report word error rates.

On the other hand, it is observed that the counts of the
OOV words are generally lower than the counts of the IV
words for large corpora. Thus in [9], the probability estimates
of the character-level sequences of the OOVs are not robustly
estimated in the character-level LM and also the across word
context is not taken into account.

2. CHARACTER-LEVEL OOV MODELING
Here, we make an attempt to improve our previous approach
by taking across-word context into account for the character
sequences to be recognized in the OOV region. Normally, in-
troducing longer across-word context in the model will bring
the data sparsity problem into picture. Therefore, we use only
one previous word as context. Even though, this could not
overcome the data sparsity problem. For this reason, we clus-
ter the context into multiple classes. This is also motivated by
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the fact that some words are similar to other words based on
their semantic meaning and thus can be grouped into classes
[12]. In this paper, two different data-driven word clustering
methods are used to cluster the context. We train a separate
CLM for every class. Each LM is trained using the character-
level sequences (of the words) that follow the corresponding
class in the LM data. Thus, the resulting CLM for every class
is assumed to be richer in context compared to the single class
alone, but sparse. This sparsity is reduced by interpolating the
resulting LMs with the background CLM.

Alternatively, approaches to open vocabulary recogni-
tion necessitate automatic pronunciation generation using
grapheme-to-phoneme (G2P) model trained using a gener-
ative approach [13, 14]. In principle, G2P, also called a
pronunciation model is an alignment model. If high corre-
lation between the pronunciation distributions of the lexical
entries and the OOV words is assumed, then an M -gram P2G
model (ie., inverted G2P model) could be directly used as a
language model in the hierarchical framework. Here the pro-
nunciations of the OOVs are hidden variables necessitating a
corresponding joint character and phoneme sequence distri-
bution. Ideally, during recognition, the sum over all possible
pronunciations of each OOV word hypothesized would have
to be performed, which can nevertheless be approximated by
a maximum. As an outline, the following hierarchical strate-
gies are investigated using the best full-word large vocabulary
for the Quaero Polish LVCSR task:

a. context independent character-level LM (cf. [9])
b. pronunciation model as a language model
c. across-word multi-class context dependent CLMs
d. sequence level prefix-tree normalization for (a,b or c)

The results are compared in-terms of WER. According to our
best knowledge, investigations conducted in this paper have
never been made in literature for LVCSR tasks.

3. HIERARCHICAL APPROACH

In the first approach, the formulation of the open-vocabulary
decision rule as described in our previous work [9] is used.
We representW and C as the full-word and the character-level
model inventory size respectively. Consider a word sequence
of length K: wK

1 = w1...wK with wi ∈ W ∀ i = 1, . . . ,K.
Each word wi ∈ W is represented as a character sequence
Ci = c

|Ci|
i,1 ∈ C∗, where ci,l ∈ C ∀ i = 1, . . . ,K ∧ l =

1, . . . , |ci|. This model is created with a pre-assumption that
it can represent all the OOV words. The function C:W → C∗
maps words w to their respective sequences C(w). The acous-
tic model distribution is p(xT

1 |wK
1 , CK

1 ) for an acoustic ob-
servation sequence xT

1 = x1, . . . , xT given both a word and
the corresponding M -gram sequence. Let L and M represent
the context lengths of full-word and character models respec-
tively. The decision rule in search, r(xT

1 ), is computed as :

r(xT
1 )=argmax

K,CK
1

max
wK

1

p(xT
1 |wK

1 , C
K
1 )

K∏
l=1

[
p(wl|wl−1

l−L+1) ·


∏|Cl|

m=1 p(cl,m|c m−1
l,m−M+1) iff wl = woov

1 iff wl 6= woov ∧ C(wl) = Cl

0 otherwise


]

(1)

4. INCLUDING ACROSS-WORD CONTEXT

In word clustering, words are grouped into subsets using some
similarity measure. Table 1 shows several examples of bi-
grams listed under three different sets. In each set, all the ital-
icized words belong to the same class. For simplicity, it is as-
sumed that some of the non-italicized words are OOVs. It can
be seen that the OOV words like (aachen, aeons, office) have
a strong relationship with the class of its preceding word. Fol-
lowing this observation, we want to recognize the characters
of the OOV word based on the class of its preceding word. In

Table 1. Examples showing OOV word dependencies in con-
text with its preceding word

set-1 set-2 set-3
two meters outside aachen my birthday

twenty aeons inside berlin your office
square meters near köln his wallet

general, OOVs are the least frequent words or unseen words
in the training text. Thus, clustering either OOVs or its pre-
ceding context is a challenging task as count statistics become
weaker as the OOV rate decreases. Nevertheless, OOVs like
frequent words follow specific set of grammar rules. In this
approach, words are clustered using two data-driven methods
namely, (loose) semantic clustering using Singular Value De-
composition (SVD) [15, 16] and Maximum-Likelihood cri-
terion [17]. In SVD clustering, all the words in the text (bi-
grams) are converted into real valued vectors using word-pair
co-occurrence matrix and then SVD is applied. The generated
vectors are grouped into % subsets/clusters using standard k-
means algorithm. Alternatively, all the words in the text (bi-
grams) are also grouped into required number of clusters (%)
using the mkcls tool [17].

In the first approach (cf. Section 3), the probability
mass for the OOV character-level sequences is not reli-
able due to relatively low count estimates compared to
the count estimates of the IV character-level sequences in
the CLM. Thus, to overcome this problem, all the OOV
classes are interpolated with the background CLM. In prin-
ciple, the parameter p(cl,m|c m−1

l,m−M+1) could be changed to
p(cl,m|c m−1

l,m−M+1, %(wh)) in Eq. 1, where %(wh) represents
the class-level sequence of the words in the history. Due to
complexity reasons, it is reduced to p(cl,m|c m−1

l,m−M+1, %(wl−1)).
Thus, the latter part of the Eq. 1 within the braces changes to:
∏|Cl|

m=1 p(cl,m|c m−1
l,m−M+1, %(wl−1)) iff wl = woov

1 iff wl 6= woov ∧ C(wl) = Cl

0 otherwise

 (2)

In principle, the conditions are applied in Eqs. 1 or 2 in
such way that character-level sequences are enabled only
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when woov class is observed. In practice, the character-
level sequences from the CLMs could also represent the
words present in the full-word vocabulary. This leads to:∑

w∈W p(w|wh) + p(woov|wh)
∑

w/∈W p(C(w)) < 1, ie.,
although both the full-word and CLMs are independently nor-
malized, the overall hierarchical LM sums always less than
one. But, if the CLM satisfies the constraint

∑
w/∈W p(C(w)) =

1 and
∑

w∈W p(C(w)) = 0 , then
∑

w∈W p(w|wh) +
p(woov|wh)

∑
w/∈W p(C(w)) = 1. This problem is solved

using prefix-tree normalization as described in Section 6.

5. JOINT CHARACTER AND PRONUNCIATION
DISTRIBUTION

The joint-sequence M -gram G2P model is converted into
a finite state automaton [13]. Here, the input labels are
graphemes and output labels are phonemes. P2G model is
generated by interchanging the input and output symbols.

6. LEXICAL PREFIX-TREE NORMALIZATION
LetW be the set of words present in the vocabulary exclud-
ing unknown word symbol U and sentence-end symbol S. Let
C be the set of all characters excluding the word end symbol
#, but including the word begin symbol $. If h represents
word-level history, then the word-level N -gram model can be
represented as p(w|h) ∀ w ∈ W ∪ {U,S}, h ∈ {W ∪ U}∗.
If hc represents character-level history then, a character-level
M -gram model can be represented as p(c|hc) ∀ c ∈ C ∪
{#}, hc ∈ C∗. Thus, using the above notations, a character-
level prefix tree can be constructed with inner arcs represent-
ing characters, leaves representing word ends as indicated by
the word end symbol # and sharing a common word-begin
node. As shown in Fig. 1, nodes attached directly to char-

$

$

Fig. 1. An illustration of a lexical prefix-tree
acters from words of the full-word lexicon (W) might have
outgoing arcs, i.e., successor characters from W and OOV
words. Therefore, the leaves of the tree necessarily denote
word-ends with the corresponding word-end symbol, since
characters from the alphabet can always be continued to form
further, possibly new OOV words. For example, an OOV
word character sequence ‘TAXON’ shares the path of the IV
character sequence ‘TAX’ as its prefix. But, from the prefix-
tree it can be seen that the word-ends leaves (# ) are exclu-
sive. In other words, all the words, ie. either IV or OOV word
have a unique word-end leaf (#). Now, we define the prefix
subsets of the words present in the lexicon in the prefix-tree.
Let W(cN1 ) denote a set of all the character-level sequences

of the words from the fixed lexicon. A character sequence
might also end with the word-end symbol (#). Let w(cN1 ) be
a function that returns the word represented by a character se-
quence cN1 , andW(cN1 ) is the set of all words from the fixed
vocabularyW with prefix cN1 (prefix subsets). Then,

W(cN1 #) =

 w(cN1 ) iff w(cN1 ) ∈ W
∅ iff N > 0 ∧ w(cN1 ) 6∈ W

W ∧ {S} iff N = 0

 (3)

Using Bayes rule, the character sequence probabilities are
computed as p(cN1 ) =

∏N
i=1 p(c1|cn−11 ), which satisfy

the following constraints:
∑

c∈C∪{#} p(c|hc) = 1 and∑
c∗∈C∗ p(c∗#) = 1. Thus, the requirement for sequence-

level normalization is the joint probability of character se-
quences should exclude all the words from the fixed lexicon
W , and only represent OOV words. Therefore, we strictly
distinguish all the character sequences which end with a
word-end symbol (#) and also all the character sequences
which do not end with a word-end symbol (#). Thereby,
the modified CLM only needs to exclude complete character
sequences that represent words from the fixed lexicon W .
For example, the modified CLM generated using a prefix-
tree approach should provide ‘non-zero’ probabilities for the
word-end terminals of the character sequences of an OOV
words ‘TAXON’ and ‘TAXOL’, as shown in Fig. 1. It should
also provide ‘zero’ probabilities for the word-end terminals of
the IV character sequences ‘TAX’ and ‘TAXI’. Thus prefix-
tree based LM can be generated as follows, assuming that
f(hc) is returning the first character in hc:

p̄(c|hc)=

{
0 iff c = # ∧ w(hc) ∈ W ∧ f(hc) = $

p(c|hc)
1−

∑
(w∈W:w=w(hc)∧f(hc)=$) p(#|hc)

otherwise

}
(4)

7. EXPERIMENTAL SETUP
Maximum Likelihood based triphone across-word acoustic
models are generated using 110 hours of Polish audio data.
The source of audio data is mainly European Parliament Plan-
ery Sessions (EPPS) and Broadcast News (BN) articles. For
the domain adapted LM training, around 600 Million running
full-words from EPPS, news articles, pod-cast, audio-data are
used. For the transducer operations, the Openfst toolkit is
used [18]. For the experiments, the N -gram backoff LMs
(N=3) with modified Kneser-Ney smoothing are estimated
using vocabulary sizes : 100k, 200k, 300k and 600k based
on word frequency using srilm tools [19]. A background
11-gram CLM is trained on the character sequences of all
the words in the corpus using Witten-Bell smoothing. Sim-
ilarly, multiple 11-gram CLMs are trained dependent on the
class of the immediate previous word. They are linearly in-
terpolated with the background CLM. Likewise, a 32-gram
prefix-tree normalized LM is generated. A hybrid LM is gen-
erated using a mixture of 200k full-words and characters. For
the realization of Eq. 1 and 2, the WFST based dynamic
decoding is used due to memory constraints. The recogni-
tion performance is investigated using the development cor-
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pus (Dev10: 3.2h) and the evaluation corpus (Eval10: 3.5h)
from the Quaero project.

8. RESULTS

As shown in Table 2, both the development and evaluation
corpora have similar OOV rates across different vocabularies.
For the full-word systems, although an increase in word per-
plexity is observed, character perplexity is least affected. The
relationship between PPL and WER is not straight forward.

It is observed that the addition of full-words to the exist-

Table 2. Selection of an optimal full-word baseline ( pplw:
word level PPL, pplc: character-level PPL )

Vocabulary size
corpus metric 100k 200k 300k 600k
Dev10 WER/OOV 27.6/3.9 25.5/2.0 25.9/1.4 26.0/0.7

pplw/pplc 432/2.73 485/2.78 609/2.89 686/2.95
Eval10 WER/OOV 31.1/4.5 28.5/2.3 28.7/1.6 28.7/0.9

pplw/pplc 457/2.74 526/2.80 664/2.92 748/2.98

ing vocabulary always does not guarantee an optimal WER.
It is found that the 100k system has a reasonable OOV rate.
200k system has a lower OOV rate and is the optimal sys-
tem in terms of WER. Thus, both of these systems are cho-
sen for the multi-class hierarchical experiments to investi-
gate the effect of classes across different vocabularies. The
200k system is chosen for further hierarchical experiments.

Multi-class hierarchical approach results are shown in Ta-

Table 3. WERs Vs. ML/SVD classes (FW: fullword baseline)
vocab. corpus WER[%]

FW No. of classes
1 2 5 10

100k Dev10 27.6 26.5 26.4 26.4 26.4
Eval10 31.1 30.1 29.8 29.8 29.9

200k Dev10 25.5 25.0 25.9 – –
Eval10 28.5 28.0 – – –

ble 3. Here, it is observed that for the 100k vocabulary size,
using two or five clusters is beneficial in-terms of the WER.
For the 200k vocabulary size, as the OOV rate drops further,
clustering did not help, as it is difficult to cluster the OOVs
having poor count statistics. Alternatively, due the effect of
linear interpolation of the background CLM, better WER is
achieved compared to our first hierarchical approach (Section
3). WERs using ML clustering method are not shown in the
Table 3, as they are very similar to the WERs obtained us-
ing SVD based clustering method. All the experimental re-
sults are shown in Table 4 for better comparative analysis.
As hypothesized earlier, the system using a hybrid LM pro-
duced higher recognition errors due to more acoustic confu-
sions introduced by characters. Limited and consistent im-
provements in-terms of WER are obtained using the pronun-
ciation model (P2G) or the character-level LM in the hierar-
chical framework. The reason is generating proper pronun-
ciations for real-world OOVs using a G2P model is compli-
cated [13, 20]. Without prefix tree normalization, best results

Table 4. Detailed Results ( 200k+char : hybrid LM con-
taining full-words and characters, char : hierar. approach cf.
Section 3, P2G : hierar. approach cf. Section 5, multi: im-
proved hierar. approach cf. Section 4, PPL : character-level
perplexity, CER: character error rate)

Hierarchical LMs prefix PPL WER CER
Level-1 Level-2 norm (char) [%] [%]

200k+char - - 2.60 25.8 14.3
200k - - 2.78 25.5 14.0

(Dev10) P2G - 2.99 25.3 13.8
char 2.95 25.3 13.7
multi 2.93 25.0 13.7

yes 2.92 24.8 13.7
200k - - 2.80 28.5 20.9

(Eval10) P2G - 3.02 28.4 20.9
char 2.99 28.3 20.9
multi 2.98 28.0 20.7

yes 2.98 27.9 20.7

are obtained using an improved hierarchical model. Alterna-
tively, the prefix tree normalized improved hierarchical model
outperformed all other approaches. Using our best system, the
reductions in WERs are reported as: [ Dev : ≈ abs: 0.7%, rel:
2.7%], [Eval: ≈ abs: 0.6%, rel: 2.1%]. and, OOV recognition
rates are reported as [Dev: 25%, Eval: 23%].

9. CONCLUSIONS

We made an attempt to recognize OOVs as a sequence of
characters for a zero OOV rate LVCSR system using multiple
strategies. Various strategies include incorporation of a pro-
nunciation model or a multi class character level model or an
interpolated character level model using the prefix-tree nor-
malization within the hierarchical framework. Limited, yet
consistent improvements are obtained using the pronuncia-
tion model. In the multi class based approach, the characters
of the OOVs are recognized based on the class of its preceding
word during decoding. Here, each class-level LM is linearly
interpolated with the background character-level LM and then
prefix-tree normalization is applied, leading to better prob-
ability estimates in the OOV regions compared to our pre-
viously proposed approach [9]. Furthermore, our proposed
prefix-tree based sequence normalization approach helped in
further reducing the word error rate when applied to the multi-
class hierarchical LMs. Significant number of OOVs are rec-
ognized. The experimental results are found to be statistically
significant (under 10% significant level, p-value ≤ 0.1) [21].
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“Hierarchical Hybrid Language Models for Open Vo-
cabulary Continuous Speech Recognition using WFST,”
in Workshop on Statistical And Perceptual Audition,
Portland, OR, USA, Sept. 2012, pp. 46 – 51.

[10] M. Kozielski, D. Rybach, S. Hahn, R. Schlüter, and
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