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ABSTRACT

This work evaluates multi-microphone beamforming and single-
microphone spectral enhancement strategies to alleviate the re-
verberation effect for robust automatic speech recognition (ASR)
systems in different reverberant environments characterized by
different reverberation timesT60 and direct-to-reverberation ra-
tios (DRRs). The systems consist of minimum variance distortion-
less response (MVDR) beamformers in combination with minimum
mean square error (MMSE) estimators, and late reverberation spec-
tral variance (LRSV) estimators, the latter employing a generalized
model of the room impulse response (RIR). Various system archi-
tectures are analyzed with a focus on optimal speech recognition
performance. The system combining an MVDR beamformer and a
subsequent MMSE estimator was found to lead to the best results,
with relative reductions of 27.7% compared to the baseline system.
This is attributed to a more accurate LRSV estimate from spatial
averaging and diffuse field refinement for the MMSE estimator.

Index Terms— Speech dereverberation, minimum variance dis-
tortionless response beamformer, minimum mean square error esti-
mator, late reverberation spectral variance, speech recognition

1. INTRODUCTION

The impact of reverberation on spoken language is one of the major
problems in automatic speech recognition (ASR), which has been in
the focus of many recent studies dealing with robustness in speech
processing [1, 2, 3, 4]. Strategies that aim to alleviate the reverber-
ation effect range from speech enhancement and feature extraction
over reverberant signal modeling to machine learning approaches,
that have lately been shown to strongly improve recognition accord-
ing to the results from the REVERB Challenge [3]. However, due
to the spectral coloration and temporal smearing, reducing the re-
verberation effect remains a major challenge in front-end audio pro-
cessing in general, and its application to ASR systems specifically.
Dereverberation is usually divided into two categories. (a) Rever-
beration cancellation, which applies a linear filter to the received
microphone signals or in front of the loudspeakers based on the es-
timation of the room impulse responses (RIRs) between the speaker
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and the microphones [5, 6], and (b) suppression of the late reverber-
ation, which has a major impact on ASR performance [7], by em-
ploying a non-linear operation to the received microphone signals in
the spectral domain, often ignoring the phases. These dereverbera-
tion approaches do not require the complete RIR, but operate on few
parameters, e.g. the reverberation timeT60 [8] and/or the direct-to-
reverberation ratio (DRR) [9]. Furthermore, they have been shown to
be robust against changes between the speaker and the microphones
due to the fact that the late reverberation spectrum is insensitive to
these variations [10]. In the single-microphone scenario, a mini-
mum mean square error (MMSE) estimator is commonly employed
to suppress the late reverberation spectrum, for which a late rever-
beration spectral variance (LRSV) estimator is required. If multiple
microphones are available, beamforming has been established as a
standard since it suppresses noise and reverberation based on the in-
herent spatial information [11, 1].

This contribution investigates the complementarity of these ap-
proaches and explores combinations of late reverberation suppres-
sion by beamforming and MMSE-based estimation; ASR word error
rates (WERs) are chosen as performance measure, covering (mainly)
noise-free conditions in various reverberant environments, i.e. differ-
entT60 according to different rooms and different DRRs w.r.t. dif-
ferent speaker-microphone distances [12]. More specifically, a min-
imum variance distortionless response (MVDR) beamformer [13] is
used to suppress the influence of late reverberation which allows
for a separation from the early reflections as additive noise com-
ponents [12, 10]. For scenarios in which the speaker-microphone
distance is smaller than the critical distance, i.e. if the DRR is larger
than 0 dB [12], a generalized LRSV estimator [9] is adopted that
considers the direct sound separately to provide a more generalized
RIR model compared to Polack’s statistical model used in [8]. The
combination of the MVDR beamformer and the MMSE estimator
is fused by the LRSV estimator, and we investigate two options for
this fusion: a direct operation on the multi-channel data and on the
output of the beamformer. In a related study, two methods to jointly
combine MVDR beamforming and single-channel MMSE estima-
tion have been proposed [14]. However, the focus of [14] was on
enhancement rather than the recognition and it was limited to DRRs
smaller than 0 dB, whereas this study covers a wide range of DRRs.
In [15], a system to jointly suppress the noise and the late rever-
beration was proposed but the MVDR beamformer and the MMSE
estimator were cascaded independently, whereas here, their cooper-
ation is taken into account in the analysis. Furthermore, motivated
by the optimal broadband multi-channel MMSE enhancement solu-
tion or post-filtering [16], which consists of an MVDR beamformer
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and a single-channel Wiener filter as a whole, another combination
scheme is proposed to explore the late reverberation coherence ma-
trix derived from the LRSV estimate into a generalized post-filter so-
lution [17] instead of the conventional Zelinski approach [18], based
on the fact that the late reverberation between channels are inher-
ently and strongly correlated.

The remainder of this paper is organized as follows: Section 2
introduces the system architectures analyzed in this study. Multi-
microphone dereverberation including the MVDR beamformer and
the post-filtering solution is introduced in Section 3. Section 4
briefly reviews the single-microphone LRSV estimator necessary
for different system combinations. The experimental procedure and
results of the ASR systems are addressed and discussed in Section 5.
Concluding remarks are given in Section 6.

2. SYSTEM COMBINATION STRUCTURES

Based on the mutual influence between the MVDR beamformer
and the single-channel MMSE estimator, four different combination
strategies are analyzed as depicted in Fig. 1 in order to suppress the
reverberation for ASR systems.
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Fig. 1: Four different system combinations (I)-(IV) consisting of
MVDR beamformers and MMSE estimators, as well as the respec-
tive LRSV estimators.

System (I) shows a straightforward concatenation of the MMSE
estimators prior to an independent MVDR beamformer. LRSV esti-
mation operates independently for all the multi-microphone signals
and serves as input to the MMSE estimators only. The MMSE esti-
mation does not change the phase information of each microphone
signal, i.e. the spatial information for subsequent beamforming is
preserved; (II) is another straightforward combination, in which the
MMSE estimator follows an independent MVDR beamformer. For
analysis, the MVDR-filtered RIR is used by the subsequent MMSE
and LRSV estimators. As well, the MMSE and LRSV estimators
operate on a single-channel beamformer output, resulting in a low
computational complexity; (III) integrates the MVDR beamformer
and the successive MMSE estimator by an MVDR refined LRSV
version based on a spatially averaged LRSV estimate from all multi-
microphone signals. In comparison to (II), this system avoids spatial
correlation introduced by the MVDR beamformer output [10] leak-
ing to the LRSV estimator; (IV) illustrates the multi-channel MMSE
enhancement scheme according to [16], which can be decomposed

into an MVDR beamformer followed by a single-channel Wiener
filter. Here the MMSE estimator is actually a post-filter [18, 17].

3. DEREVERBERATION BY MULTI-MICROPHONE
BEAMFORMING AND POST-FILTERING

Beamforming and multi-channel post-filtering have been applied to
dereverberation in multi-microphone scenarios, cf. e.g. [19, 20, 21,
22]. The MVDR beamformer [13] aims at minimizing the output
power of a disturbance while providing a unity gain in the direction
of the target source. The filter coefficients of the MVDR beamformer
in the short-time Fourier transform (STFT) domain can be derived as

W[ℓ, k] =
Γ

−1[ℓ, k]d[k]

dH [k]Γ−1[ℓ, k]d[k]
, (1)

with k, ℓ and(·)H representing the frequency bin, frame index and
Hermitian transpose, respectively.d[k] denotes the steering vector
of the target andΓ[ℓ, k] is the coherence matrix of the interference
signal. Note that the direction of arrival (DOA) ford[k] is beyond
the scope of this paper. Various methods exist in the literature to
estimate DOAs, cf. e.g. [23]. For this paper, the noise signal is ne-
glected since the focus is removal of reverberation and the received
reverberant signal can be modeled as early reflections and late rever-
beration, denoted in the following asX[ℓ] = Xe[ℓ] +Xl[ℓ], where
k is omitted for simplicity. The coherence matrixΓ in (1) for sys-
tems (I)-(IV) in Fig. 1 can be replaced either by the identity matrix
IM which leads to the delay-and-sum (DS) beamformer [11], or by
a diffuse noise fieldΓdiff resulting in the superdirective (SD) beam-
former [13]. WhenΓdiff is chosen, a white noise gain constraint
WNGmax is used in (1) since the SD beamformer is sensitive to un-
correlated noises [13]. Alternatively, the LRSV coherenceΓXlXl

estimated fromM received microphone signals can be also adopted
as the coherence matrixΓ in (1) especially for (IV).

(IV) is solved by a generalized post-filter approach [17] due
to the inherent correlation among late reverberationXl[ℓ] from all
the microphone signalsX[ℓ]. The coefficients derived in (IV) can
be expressed by an MVDR beamformer with a post-filter [16] as
WIV[ℓ] = P[ℓ]W[ℓ], and the post-filter transfer function [18] is

P[ℓ] = max

(
2

M(M−1)

∑M−1
i=1

∑M

j=i+1 φ̃
(ij)
xexe

[ℓ]

1
M

∑M

i=1 φ̃
(ii)
xx [ℓ]

, Pmin

)

, (2)

where φ̃(ii)
xx is the auto-correlation of the speech signal in micro-

phone channeli. A lower bound constraintPmin is proposed to alle-
viate speech distortions for ASR systems. The cross-correlaton item
φ̃
(ij)
xexe

betweenith andjth channel is estimated per frame by [17]

φ̃(ij)
xexe

=
ℜ{φ̃

(ij)
xx } − 1

2
ℜ{Γ

(ij)
xlxl

}(φ̃
(ii)
xx + φ̃

(jj)
xx )

1−ℜ{Γ
(ij)
xlxl

}
, (3)

whereℜ{·} calculates the real part of a complex signal. A time
alignment is required forX[ℓ] [17], which can be achieved by the
steering vectord[k] as depicted in Fig. 1 (IV). In (3) a first-order re-
cursive update of the auto- and cross-correlation calculations is ap-
plied and a maximal threshold is introduced to avoid the denomina-
tor being non-positive.Γxlxl

is the element of the LRSV coherence
matrixΓXlXl

, which can be estimated as follows.

4. SINGLE-MICROPHONE LRSV ESTIMATOR

The LRSV estimator plays an important role for the combined
systems in Fig. 1. Considering the reverberant situations that the
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speaker-microphone distances are smaller than the critical distance
with positive DRRs [12], as well as a boosted DRR value achieved
by the beamformer [24] e.g. in (II), a generalized statistic reverber-
ation model [9] is used here which separates the direct path from
Polack’s RIR model as used in [8], resulting in the spectral variance
of the RIRh in the STFT domain as

λh[ℓ] =

{
βd for ℓ = 0 ,
βre

−2αℓτs for ℓ ≥ 1 ,
(4)

whereβd andβr denote the variances of the direct path and the re-
verberant part.τs is the STFT time shift (hop size in s), and the decay
coefficientα is related toT60 by α = 3 ln(10)/T60. Accordingly,
the DRR can be linked as [9]

DRR = 10 log10

(
1− e−2ατs

e−2ατs

βd

βr

)
. (5)

Indeed, due to the duration of the time shiftτs, the DRR value is
actually related to the clarity index, e.g. ifτs is set to 50 ms for a
longer-term STFT, (5) represents the value ofC50 [12]. Using (4),
the reverberation variance can be computed by [9]

λr[ℓ] = (1− κ)e−2ατsλr[ℓ− 1] + κe−2ατsλx[ℓ− 1] , (6)

whereκ = βr/βd is calculated from the DRR in (5), constraint in
the range of(0, 1]. Then, the LRSV is given by

λl[ℓ] = e−2ατs(Le−1)λr[ℓ− Le + 1] , (7)

whereLe denotes the number of frames which corresponds to the
duration of early reflections of the RIR, usually set to 50 ms [8]. An
instantaneous estimate of the input reverberant spectral varianceλx

in (6) can be obtained by a smoothed version of|X[ℓ]|2 as

λx[ℓ] = ηλx[ℓ− 1] + (1− η)|X[ℓ]|2 , (8)

where the smoothing constantη is calculated byη = 1/(1 + 2ατs).
According to [10], in order to improve the tracking performance of
the reverberant speech onset,η shall be set to be lower asηatt when
|X[ℓ]|2 > λx[ℓ − 1]. Note that such LRSV estimator requires a
priori information ofT60 and DRR or clarity index at least in full-
band mode, which in practice can be estimated by [25] or be jointly
estimated by a trained neural network [26].

In (I)-(III), a single-microphone parameterized MMSE spectral
magnitude estimator [27] is used to determine the weighting function
G[ℓ] to obtain the enhanced speech signal. The a priori early reflec-
tion to late reverberation energy ratio required for computingG[ℓ] is
estimated using the decision-directed approach [28]. Subsequently,
the estimated desired signalX̂e[ℓ] is calculated by

X̂e[ℓ] = max(G[ℓ], Gmin)X[ℓ] , (9)

whereGmin is a lower bound for the weighting functionG[ℓ], similar
to Pmin in (2) which alleviates speech distortions. Then, an inverse
STFT is conducted to reconstruct the output speech signal in the time
domain used for the subsequent ASR experiments.

(I) uses each received microphone signal directly for the LRSV
and the MMSE estimator, which can be considered as independent
single-microphone dereverberation schemes. (II) needs the MVDR
beamformer output asX[ℓ] for calculating (8)-(9). Theoretically, if
the RIRs are used to generate the reverberant speech from the clean
(anechoic) speech, the MVDR output can be modeled as the clean
speech convolved with an MVDR-filtered RIR, expressed as

hII =

M∑

i=1

h(i) ∗ w
(i)
II , (10)

where∗ denotes the convolution operation andh(i) represents the
RIR of the ith channel. w(i)

II are the time domain MVDR beam-
former coefficients in (II). In contrast, (III) estimates the LRSV from
each received microphone input, but then a spatially averaged ver-
sion refined by the MVDR coefficients [14] is applied to the poste-
rior MMSE estimator. The LRSV estimate is refined by [14]

λl,III[ℓ] = λl[ℓ]W
H
III[ℓ]ΓWIII[ℓ] , (11)

whereΓ can beIM orΓdiff w.r.t. the corresponding beamformer co-
efficientsWIII, and the spatially averaged LRSVλl is calculated by
λl =

∑M

i=1 λ
(i)
l /M . For (IV), a complex coherence matrixΓXlXl

can be applied to the MVDR beamformer calculation in (1), and
such a matrix is also required by the post-filter computation in (2).

Its elementsΓ(ij)
xlxl

are defined asΓ(ij)
xlxl

= φ̃
(ij)
xlxl

/

√
φ̃
(ii)
xlxl

φ̃
(jj)
xlxl

[17],

where the auto- and cross-correlation itemsφ̃xlxl
are obtained from

the LRSV estimateλl,IV. It is worthwhile noting that the time align-
ment byd[k] in Fig. 1 (IV) has no influence onT60 and DRR or
clarity index values when estimatingλl,IV by (7).

5. EXPERIMENTAL RESULTS

We used the WSJCAM0 British English corpus [29] as database
of clean (anechoic) speech. It contains 7861 utterances for train-
ing and another 742 for testing at a sampling rate of 16 kHz. 18
real-world RIRs recorded by a circular microphone array (M = 8)
with 20 cm diameter from the REVERB Challenge [3] were used
for multi-condition training mode and another 6 RIRs [3] for gen-
erating various test sets (denoted by T1-T6) with differentT60 and
DRR values, as shown in Fig. 2 (a). The STFT has been computed
using a 32 ms Hann window with 1/8 overlap, i.e.τs = 4 ms, in or-
der to make the hop size narrow enough to represent the direct path.
In other words, the direct path contains the early reflections up to
4 ms for calculating the DRR, which is also equivalent to the clarity
indexC4. From pilot experiments, the time instance at which the
late reverberation starts was set to 48 ms, i.e.Le = 12 in (7). A
white noise gain constraintWNGmax = 10 dB was selected for the
MVDR beamformers withΓdiff and measuredΓXlXl

in (1). The
weighting factor of 0.5 was used in the decision-directed approach.
ηatt was chosen as0.7η in (8). Gmin in (9) was set to 0.1 as a good
value regarding the ASR performance, which is also in conformance
with [30]. Pmin in (2) was chosen as 0.1 and the smoothing fac-
tor of the first-order recursive filter was 0.875, as well as a maximal
threshold of 0.9 used in (3). Directly from the RIRs, full-band DRR
or C4 was calculated accordingly andT60 was determined by using
Schroeder’s method [31].
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T1 T2 T3 T4 T5 T6 Avg.
clean-cond. 15.44 26.07 28.49 61.76 36.46 78.5841.13
ideal matched 12.29 15.11 16.84 24.66 19.28 31.7019.98
multi-cond. 15.00 16.91 18.31 27.17 21.02 35.7822.36
MMSE i = 1 14.14 17.36 18.18 25.84 20.57 31.3521.24

DS IM 13.42 15.72 15.68 22.50 17.93 30.2719.25
SDΓdiff 12.86 14.54 14.02 19.90 15.17 25.7617.04

(I) IM 13.62 15.71 15.73 21.03 18.06 27.0718.53
(I) Γdiff 12.90 14.48 14.28 20.30 16.23 25.2417.23
(II) IM 13.59 15.12 15.57 21.09 17.74 27.3418.40
(II) Γdiff 12.61 14.09 14.01 18.76 14.89 23.20 16.26
(III) IM 13.55 15.54 15.51 20.83 17.55 26.8618.30
(III) Γdiff 12.68 13.90 13.95 18.46 15.01 23.12 16.18
(IV) IM 13.63 16.33 16.08 21.46 17.91 26.7718.69
(IV) Γdiff 12.66 14.32 14.14 19.69 15.59 23.7316.68
(IV) ΓXlXl

15.03 18.01 18.44 24.27 21.31 29.6221.11

Table 1: WERs (%) of each test set with different systems. WER
with clean-cond. HMMs and clean (anechoic) test data is 11.06%.

The framework for the ASR experiments was implemented
based on the Hidden Markov Model Toolkit (HTK) [32]. Overlap-
ping speech segments of 25 ms duration and 10 ms shift were used
for feature extraction. Mel-frequency cepstral coefficients with delta
and double-delta coefficients as well as cepstral mean and variance
normalization were employed. Context-dependent triphone hidden
Markov models (HMMs) with 3 states per model were applied to-
gether with 12 Gaussian mixture models per state and a language
scaling factor of 14.0 for the 5k-word-bigram language model.

As seen in Table 1, lines 2-5 show the WERs with different
training modes all in single-channel scenarios with the reference mi-
crophone signali = 1, where the single-microphone MMSE-based
dereverberation is applied at line 5. For comparison, lines 6-7 give
the results with the beamformer-only systems, and the rest reveals
the performance of the combined systems (I)-(IV). Even though the
ideal matched training models are applied, ASR systems do suffer
from the reverberation effect. Generally, compared to the baseline
which employs the multi-condition training mode, dereverberation
approaches in both single- and multi-microphone scenarios improve
the ASR performance, where beamforming techniques reduce ab-
solute average WERs by 2-4% more than the single-microphone
MMSE estimator due to the additional spatial advantage brought by
multiple microphones (cf. lines 5-7). Moreover, the SD beamformer
surpasses the simple DS beamformer by about 2% absolute WER
reduction in all the proposed systems, which indicates that diffuse
noise field assumption holds for late reverberation, as also illustrated
in Fig. 2 (b) for T6 with largeT60 and low DRR value.

System (I) performs very similar to beamformer-only systems
where the MMSE estimators provide a higher benefit when com-
bined with the DS beamformer (cf. lines 6-9). This can be par-
tially explained by distortions of the diffuse field caused by the front
MMSE estimators, particularly for the near-position test sets T1, T3
and T5, for which the WERs increase compared to the SD beam-
former alone. On the contrary, theposterior MMSE estimator in (II)
helps the beamforming system to improve the average WERs by ap-
prox. 1%. Interestingly, (II) shows that beamformers do boost the
DRR values while leaving theT60 almost unchanged, as visualized
in Fig. 2 (a). Such phenomenon also proves the necessity of separat-
ing the direct path from the RIR model in (4) in order to achieve ac-
curate LRSV estimates. Compared to (II), (III) gives slightly better
ASR performance, indicating that the spatially averaged LRSV ver-
sion together with the MVDR refinement in (11) achieves a more ac-
curate LRSV estimate, especially for the diffuse fieldΓdiff . In other
words, the spatial correlation introduced by the beamformer blurs the
MVDR-filtered RIR in (10) so that it can not exactly extract the true

late reverberation for (II). Overall, average WER reductions of 6.2%
and 3.8% are obtained by (III) with the SD beamformer compared
to the baseline and even to the ideal matched systems, respectively.
Such improvements become more obvious for the far-position test
sets such as T4 and T6 than the near-position test sets like T3.

A similar trend can be observed for system (IV), for which the
SD beamformer still performs best. It can also be observed that the
results further degrade when the beamformer in (1) uses the LRSV
coherence matrixΓXlXl

. A possible explanation is that the late re-
verberation behaves non-stationary and its coherence actually does
not match the diffuse property, especially for the near-position test
sets, as illustrated in Fig. 2 (b) where the coherence componentΓ

(13)
xlxl

of T1 deviates more severe from the diffuse curve than for the dis-
tant position case T6. Indeed, (IV) provides improvement over the
baseline as well as the beamformers alone, however, does not offer
further robustness compared to (II) and (III). It seems that the diffuse
signal suppression by the applied post-filter [17] is not optimal as the
spatial coherence assumption is not fully fulfilled [33] and only the
magnitude of the spatial coherence matrix is used in (2)-(3). The
post-filter design derived from the spatial coherence measure [33]
gives better speech enhancement quality, and coherent-to-diffuse ra-
tio estimate has shown its robustness [34] to provide more promising
ASR performance for system (IV).
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Fig. 3: PESQ scores from the outputs of different system combina-
tions with the clean (anechoic) speech as the reference signal.

In addition, a perceptual evaluation of speech quality (PESQ)
[35] has been conducted with the same test utterance used in
Fig. 2 (b) as an example. Fig. 3 shows the PESQ scores of the
different proposed systems. The scores of the systems with the DS
beamformer are not shown since the SD beamformer consistently
produces higher PESQ scores, which is in consilience with the WER
evaluation in Table 1. In general, multi-microphone dereverberation
strategies perform much better than single-microphone approaches,
and still, (III) leads to the highest average PESQ score among
(I)-(IV) composed by beamforming and MMSE-based filtering.

6. CONCLUSION

This contribution explored possible combination architectures
for dereverberation by spectral suppression schemes and (multi-
microphone) beamforming with the aim of improving ASR perfor-
mance in reverberant environments covering a wide range ofT60

(200 to 800 ms) and DRR (-2 to 15 dB). Results indicate that all
the combined systems are able to provide benefits for ASR systems
and specifically, the system (III) combining the SD beamformer and
the MMSE estimator with the LRSV refinement by the beamformer
coefficients achieves 27.7% average relative WER improvement
compared to the baseline, as well as 17.3% average relative PESQ
boost compared to the reverberant speech signal from the refer-
ence microphone. Furthermore, it is also of interest to observe the
potential of the spatial late reverberation coherence information to
enhance such complex systems that integrate a multitude of (poten-
tially complementary) techniques to deal with reverberation; future
work will apply coherence measures to further improve beamform-
ing and the post-filtering.
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