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ABSTRACT and the microphones [5, 6], and (b) suppression of the late reverber

. o ) ) ation, which has a major impact on ASR performance [7], by em-
This work evaluates multi-microphone beamforming and singlepoying a non-linear operation to the received microphone signals in
microphone spectral enhancement strategies to alleviate the rgyg spectral domain, often ignoring the phases. These dereverbera-
verberation effect for robust automatic speech recognition (ASRyjgn approaches do not require the complete RIR, but operate on few
systems in different reverberant environments characterized bp!arameters, e.g. the reverberation tiffag [8] and/or the direct-to-
different reverberation timed, and direct-to-reverberation ra- reverberation ratio (DRR) [9]. Furthermore, they have been shown to
tios (DRRs). The systems consist of minimum variance dls.tc.)rt'onbe robust against changes between the speaker and the microphones
less response (MVDR) beamformers in combination with minimumye to the fact that the late reverberation spectrum is insensitive to
mean square error (MMSE) estimators, and late reverberation spegese variations [10]. In the single-microphone scenario, a mini-
tral variance (LRSV_) estimators, the latter employing a generalizegiﬂum mean square error (MMSE) estimator is commonly employed
model of the room impulse response (RIR). Various system archiry syppress the late reverberation spectrum, for which a late rever-
tectures are analyzed with a focus on optimal speech recognitiogeration spectral variance (LRSV) estimator is required. If multiple
performance. The system combining an MVDR beamformer and gicrophones are available, beamforming has been established as a

subsequent MMSE estimator was found to lead to the best resultgiandard since it suppresses noise and reverberation based on the in-
with relative reductions of 27.7% compared to the baseline systenkgrent spatial information [11, 1].

This is attributed to a more accurate LRSV estimate from spatial

averaging and diffuse field refinement for the MMSE estimator. This contribution investigates the complementarity of these ap-

proaches and explores combinations of late reverberation suppres-
Index Terms— Speech dereverberation, minimum variance dis-sion by beamforming and MMSE-based estimation; ASR word error
tortionless response beamformer, minimum mean square error estates (WERS) are chosen as performance measure, coverindy)main
mator, late reverberation spectral variance, speech recognition  noise-free conditions in various reverberant environments, i.erdiff
entTso according to different rooms and different DRRs w.r.t. dif-
ferent speaker-microphone distances [12]. More specifically, a min
imum variance distortionless response (MVDR) beamformer [13] is

he'i ¢ . ken | . fth _used to suppress the influence of late reverberation which allows
The impact of reverberation on spoken language is one of the majqg, 5 separation from the early reflections as additive noise com-
problems in automatic speech recognition (ASR), which has been |§

1. INTRODUCTION

. ; ) > onents [12, 10]. For scenarios in which the speaker-microphone
the focus of many recent studies dealing with robustness in speefiiance is smaller than the critical distance, i.e. if the DRR is larger

pr_ocessing [1, 2, 3, 4]. Strategies that aim to alleviate the reverbg{han 0 dB [12], a generalized LRSV estimator [9] is adopted that
ation effect range from speech enhancement and feature extractiQfpgjgers the direct sound separately to provide a more generalized
over reverberant signal modeling to machine learning approachegyr model compared to Polack's statistical model used in [8]. The
_that have lately been shown to strongly improve recognition accordéombination of the MVDR beamformer and the MMSE estimator
ing to the results from the REVERB Challenge [3]. However, dueis f,seq by the LRSV estimator, and we investigate two options for
to the spectral coloration and temporal smearing, reducing the rgpis sion: a direct operation on the multi-channel data and on the
verberation effect remains a major challenge in front-end audio proc')utput of the beamformer. In a related study, two methods to jointly

cessing in general, and its application to ASR systems specifically.qmpine MVDR beamforming and single-channel MMSE estima-
Dereverberation is usually divided into two categories. (a) Rever- 4,1 have been proposed [14]. However, the focus of [14] was on
beration cancellation, which applies a linear filter to the receivec{9

nhancement rather than the recognition and it was limited to DRRs

microphone signals or in front of the loudspeakers based on the e§pler than 0 dB, whereas this study covers a wide range of DRRS.
timation of the room impulse responses (RIRs) between the speakgy [15], a system to jointly suppress the noise and the late rever-

This work was partially supported by the projects "Dereegation and beration was proposed but the MVDR beamformer and the MMSE
Reverberation of Audio, Music, and Speech” (DREAMS, projex 316969) es.tlm‘fﬂor Were. cascaded |n.dependently,_ whereas here, their F:ooper—
and "Knowledge Transfer System” (KNOTS, project no. AAL-208-144)  ation is taken into account in the analysis. Furthermore, motivated
funded by the European Commission (EC) and the BMBF, as welyasep by the optimal broadband multi-channel MMSE enhancement solu-
DFG-Cluster of Excellence EXC 1077/1 "Hearing4All”. tion or post-filtering [16], which consists of an MVDR beamformer
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and a single-channel Wiener filter as a whole, another combinatiomto an MVDR beamformer followed by a single-channel Wiener
scheme is proposed to explore the late reverberation coherence nidter. Here the MMSE estimator is actually a post-filter [18, 17].
trix derived from the LRSV estimate into a generalized post-filter so-

lution [17] instead of the conventional Zelinski approach [18], based 3. DEREVERBERATION BY MULTI-MICROPHONE

on the fact that the late reverberation between channels are inher- BEAMFORMING AND POST-FILTERING

ently and strongly correlated. ) ] o )

The remainder of this paper is organized as follows: Section Beamforming and multi-channel post-filtering have been applied to
introduces the system architectures analyzed in this study. Multidereverberation in multi-microphone scenarios, cf. e.g. [19, 20, 21
microphone dereverberation including the MVDR beamformer anc?2]- The MVDR beamformer [13] aims at minimizing the output
the post-filtering solution is introduced in Section 3. Section 4Power of a disturbance while providing a unity gain in the direction
briefly reviews the single-microphone LRSV estimator necessarf the target source. The filter coefficients of the MVDR beamformer
for different system combinations. The experimental procedure anti the short-time Fourier transform (STFT) domain can be derived as

results of the ASR systems are addressed and discussed in Section 5. ~1[e, k]d[k]

i iven i i Wl k] = e 1
Concluding remarks are given in Section 6. [€, K] TR 1[0, [ 1)

2 SYSTEM COMBINATION STRUCTURES with k, £ and (-)¥ representing the frequency bin, frame index and

Hermitian transpose, respectivel[k] denotes the steering vector

Based on the mutual influence between the MVDR beamforme?f the target and"[¢, k] is the coherence matrix of the interference

and the single-channel MMSE estimator, four different combinatio signal. Note thgt the d”eC“OT‘ of arrival (DOA). feﬂk} 1S peyond
. ; S . he scope of this paper. Various methods exist in the literature to
strategies are analyzed as depicted in Fig. 1 in order to suppress the.. f hi h . ianal i
reverberation for ASR systems. estimate _DOAs, cf. e.g. _[23]. For this paper, t e noise signal is ne-
glected since the focus is removal of reverberation and the received

‘ reverberant signal can be modeled as early reflections and late rever
_, - beration, denoted in the following a§[¢] = X.[{] + X;[¢], where
| LRSV

k is omitted for simplicity. The coherence matidikin (1) for sys-
: tems (1)-(1V) in Fig. 1 can be replaced either by the identity matrix
7.% | MvDR LT mvoR I, which leads to the delay-and-sum (DS) beamformer [11], or by
: * lbeamormer > 1 ¢ |beamformer a diffuse noise field ;¢ resulting in the superdirective (SD) beam-
* P former [13]. WhenL4ig is chosen, a white noise gain constraint
3 WNGmax is used in (1) since the SD beamformer is sensitive to un-
_. correlated noises [13]. Alternatively, the LRSV cohereiig x,
ORN0) estimated fromV/ received microphone signals can be also adopted
Yy as the coherence matiXxin (1) especially for (1V).
N s | (IV) is solved by a generalized post-filter approach [17] due
MVBR | T wmise || MVER _, to the inherent correlation among late reverberaBi¢] from all
beamformer P beamformer 1 the microphone signalX([¢]. The coefficients derived in (IV) can

be expressed by an MVDR beamformer with a post-filter [16] as
Wiy [¢] = P[{JW[{], and the post-filter transfer function [18] is

M-—1 M 7(i5)
' NI(A?I—I) Zi:l Zj:i+1 (bzgze [14 ) > (2)
Fig. 1. Four different system combinations (I)-(IV) consisting of

= Sl e

M i= L
MVDR beamformers and MMSE estimators, as well as the respec- (i) | . . . .
tive LRSV estimators. where ¢, is the auto-correlation of the speech signal in micro-

phone channel A lower bound constrainP,,.i, is proposed to alle-

System (1) shows a straightforward concatenation of the MMSEviate speech distortions for ASR systems. The cross-correlaton item
estimators prior to an independent MVDR beamformer. LRSV esti{7)  petweenith and;jth channel is estimated per frame by [17]
mation operates independently for all the multi-microphone signals o L L
and serves as input to the MMSE estimators only. The MMSE esti- Gy RS} — IR M8 + %) 3)
mation does not change the phase information of each microphone Fede T 1—R{ris) ’
signal, i.e. the spatial information for subsequent beamforming is
preserved; (1) is another straightforward combination, in which thevhere®{-} calculates the real part of a complex signal. A time
MMSE estimator follows an independent MVDR beamformer. Foralignment is required foX[¢] [17], which can be achieved by the
analysis, the MVDR-filtered RIR is used by the subsequent MMSESteering vectod[k] as depicted in Fig. 1 (V). In (3) a first-order re-
and LRSV estimators. As well, the MMSE and LRSV estimatorsCursive update of the auto- and cross-correlation calculations is ap-
operate on a Sing|e_channe| beamformer output, resumng ina |0\plled and a maximal threshold is introduced to avoid the denomina-
computational complexity; (ll) integrates the MVDR beamformer tor being non-positivel',,», is the element of the LRSV coherence
and the successive MMSE estimator by an MVDR refined LRSVMatrixI'x, x, , which can be estimated as follows.
version based on a spatially averaged LRSV estimate from all multi-
microphone signals. In comparison to (I1), this system avoids spatial 4. SINGLE-MICROPHONE LRSV ESTIMATOR
correlation introduced by the MVDR beamformer output [10] leak-
ing to the LRSV estimator; (1V) illustrates the multi-channel MMSE The LRSV estimator plays an important role for the combined
enhancement scheme according to [16], which can be decomposeygstems in Fig. 1. Considering the reverberant situations that the

R
: LRSV

P[{] = max <
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speaker-microphone distances are smaller than the critical distaneenere+ denotes the convolution operation ahfl’ represents the
with positive DRRs [12], as well as a boosted DRR value achieve@®|R of theith channel. w1<;> are the time domain MVDR beam-

by the beamformer [24] e.g. in (Il), a generalized statistic reverberformer coefficients in (II). In contrast, (I1) estimates the LRSV from
ation model [9] is used here which separates the direct path froraach received microphone input, but then a spatially averaged ver-
Polack’s RIR model as used in [8], resulting in the spectral variancgjon refined by the MVDR coefficients [14] is applied to the poste-

of the RIRA in the STFT domain as rior MMSE estimator. The LRSV estimate is refined by [14]
_ [ ba for =0, Al = N[ WL T W[ 11
Anlf] = { Bro2087 for 0> 1. 4) 1,14 1[€] Wi [£] 4], (11)

wherel" can bel s or T'qig W.r.t. the corresponding beamformer co-

where3,; and 3, denote the variances of the direct path and the re-_.. . . N
verberant partr, is the STFT time shift (hop size in s), and the decaygﬁ'mentswm' and the spatially averaged LRSVis calculated by

_ M ()
coefficienta is related taTgo by o = 31n(10)/Tso. Accordingly, A = 2i=1 A /M. For (IV), a complex coherence mat, x,

the DRR can be linked as [9] can be appl_ieq to the M\(DR beamformer'calculation in_ (1)_, and
such a matrix is also required by the post-filter computation in (2).
—2aTs .. .. JUp N (s
DRR = 101log,, (1 _732 %) . (5) Itselementd?), are defined ab'2), = ¢{7), /1/ %4, 697 [17],
e ATg -

where the auto- and cross-correlation itefag,, are obtained from
Indeed, due to the duration of the time shift the DRR value is  the LRSV estimate,; 1v. It is worthwhile noting that the time align-
actually related to the clarity index, e.g.7f is set to 50 ms for a  ment byd[k] in Fig. 1 (IV) has no influence offso and DRR or

longer-term STFT, (5) represents the valuelgh [12]. Using (4),  clarity index values when estimating 1y by (7).

the reverberation variance can be computed by [9]

Ml = (1= 8)e 22\ 0= 1] 4 ke 2 M0 —1], (6) 5. EXPERIMENTAL RESULTS
wherex = f3,/f4 is calculated from the DRR in (5), constraint in We used the WSJCAMO British English corpus [29] as database
the range of0, 1]. Then, the LRSV is given by of clean (anechoic) speech. It contains 7861 utterances for train-
Cars(Le—1) ing and another 742 for testing at a sampling rate of 16 kHz. 18
Mll] = e " e TN = Le + 1], (7)  real-world RIRs recorded by a circular microphone array & 8)

ith 20 cm diameter from the REVERB Challenge [3] were used
or multi-condition training mode and another 6 RIRs [3] for gen-
erating various test sets (denoted by T1-T6) with differBgat and
DRR values, as shown in Fig. 2 (a). The STFT has been computed
using a 32 ms Hann window with 1/8 overlap, ire.= 4 ms, in or-
Ae[f] = mhall — 1] 4 (1 — )| X4, (8)  derto make the hop size narrow enough to represent the direct path.
In other words, the direct path contains the early reflections up to
4 ms for calculating the DRR, which is also equivalent to the clarity
index Cy4. From pilot experiments, the time instance at which the
late reverberation starts was set to 48 ms, Le.= 12 in (7). A

where L. denotes the number of frames which corresponds to th
duration of early reflections of the RIR, usually set to 50 ms [8]. An
instantaneous estimate of the input reverberant spectral varkance

in (6) can be obtained by a smoothed versiofXof/]|> as

where the smoothing constants calculated by) = 1/(1 4 2ary).
According to [10], in order to improve the tracking performance of
the reverberant speech onsgtshall be set to be lower ag., when

[ X[]” > As[¢ = 1]. Note that such LRSV estimator requires a white noise gain constraitWNGnax = 10 dB was selected for the
priori information of 75, and DRR or clarity index at least in full- MVDR beamformers witil;x and measure®'x, x, in (1). The

A . . o i X, .
band mogi, Wh'Ch. |n(§)ractlc? can bekesétémated by [25] or be JOIntI3(Neighting factor of 0.5 was used in the decision-directed approach.
estimated by a trained neural network [26]. Natt Was chosen a3.77 in (8). Gimin in (9) was set to 0.1 as a good

In_(I)-(III), a single-miprophone paramt_aterized M_MS_E Spectr_alvalue regarding the ASR performance, which is also in conformance
magnitude estimator [27] is used to determine the weighting funCt'O'ﬂvith [30]. P in (2) was chosen as 0.1 and the smoothing fac-

GV] to obtain the enhanced speech signa!. The a priori early. refle%r of the first-order recursive filter was 0.875, as well as a maximal
t'°’? to late re\_/erberatlon_e_nerg)_/ ratio required for computi{] is hreshold of 0.9 used in (3). Directly from the RIRs, full-band DRR
estimated using the decision-directed approach [28]. Subsequent b . was calculated accordingly afid, was determined by using

the estimated desired sign&L [¢] is calculated by Schroeder’s method [31].
Xe [Z} = maX(G[‘gL Gmin) X[@ ’ (9) (3)500 Room1 Room Room3 ()1 =
whereG iy is alower bound for the weighting functi@®¢], similar £ o — 08 —T6
t0 Punin in (2) which alleviates speech distortions. Then, an inverses /\ & o mean os — Jiffyse
STFT is conducted to reconstruct the output speech signal in the tin& - [s)g o4
200 B B

domain used for the subsequent ASR experiments. T T Ta T T T oo
(I) uses each received microphone signal directly for the LRSV f; z

and the MMSE estimator, which can be considered as independe E 10 02
single-microphone dereverberation schemes. (Il) needs the MVDI g * 04

beamformer output aX [¢] for calculating (8)-(9). Theoretically, if S T T 0! 5 5 5 5
the RIRs are used to generate the reverberant speech from the cle_... near far near far near far Frequency / kHz
(anechoic) speech, the MVDR output can be modeled as the cledg. 2: (a) 750 and DRR values of the different test sets T1-T6 (3
speech convolved with an MVDR-filtered RIR, expressed as rooms and 2 positions), ‘'mean’ denotes the mean values from the 8-
M microphone RIRs, ‘DS’ and 'SD’ denote the values from DS-filtered
hir = z R 4 wI(Ii> , (10) and SD—fiItereq RIRs in (10); (b) shows the real part of the coherenc
=1 componen[‘éll‘;)l with a specific test utterance from T1 and T6.
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T1 T2 T3 T4 T5 T6 | Avg. late reverberation for (l). Overall, average WER reductions of 6.2%
i‘ij";zr;gg{‘cc:{ed ig-gg 125:51017 lzgg‘f Z‘S:g: 1396;5 3718-7 g‘l‘é;g and 3.8% are obtained by (lIl) with the SD beamformer compared
muli-cond. | 1500 1691 18.31 2717 21.02 35.722.36 to the baseline and even to the ideal matched systems, respectively.
MMSE:—1 | 1414 1736 1818 2584 2057 3135124 Such improvements become more obvious for the far-position test
DS, [13.42 1572 1568 2250 1703 30.2719.25 sets such as T4 and T6 than the near-position test sets like T3.
SDTuin | 1286 1454 1402 19.90 1517 25.J6l7.04 A similar trend can be observed for system (1V), for which the
0 In 13.62 1571 15.73 21.03 18.06 27071853 SD beamformer still performs best. It can also be observed that the
(1) Taisr 12.90 14.48 1428 2030 16.23 25.2417.23 results further degrade when the beamformer in (1) uses the LRSV
(1) Inr 1359 1512 1557 21.09 17.74 27.3418.40 coherence matrif'x,x,. A possible explanation is that the late re-

(N Tain 12.61 1409 1401 18.7614.89 23.20| 16.26 verberation behaves non-stationary and its coherence actually does
E:::; {,"jm ig:gg 11??'95; 1135;351 fgfg 15.1()7i5523.21% Gigfg not match the diffuse property, especially for the near—position test
(V) Tns 13.63 1633 16.08 21.46 17.91 26.7718.69 sets, as illustrated in Fig. 2 (b) where the coherence compdﬂ{)b}’)t

(IV) Tainr 12.66 14.32 14.14 19.69 1559 23.7316.68 of T1 deviates more severe from the diffuse curve than for the dis-
(V) Tx,x, | 1503 1801 1844 2427 2131 29.621.11 tant position case T6. Indeed, (IV) provides improvement over the

T baseline as well as the beamformers alone, however, does not offer
Table 1: WERs (%) of h test set with different tems. WER ' : -
w?t%?:lean-conz.(Hl)\/lclz/I:ng clleesar??anechgic)et:st ;;I;?S 151.06%. fl_thher robustne_ss compared t(_) (I and _(III). It seems that'thasbf
signal suppression by the applied post-filter [17] is not optimal as the
The framework for the ASR experiments was implementegspatial coherence assumption is not fully fulfilled [33] and only the
based on the Hidden Markov Model Toolkit (HTK) [32]. Overlap- Magnitude of the spatial coherence matrix is used in (2)-(3). The
ping speech segments of 25 ms duration and 10 ms shift were us@@st-filter design derived from the spa_tial coherence measure [33]
for feature extraction. Mel-frequency cepstral coefficients with deltgives better speech enhancement quality, and coherent-to-diéfuse r
and double-delta coefficients as well as cepstral mean and varian8€ estimate has shown its robustness [34] to provide more promising
normalization were employed. Context-dependent triphone hiddefASR performance for system (V).
Markov models (HMMs) with 3 states per model were applied to-
gether with 12 Gaussian mixture models per state and a langua( 35
scaling factor of 14.0 for the 5k-word-bigram language model. o
As seen in Table 1, lines 2-5 show the WERs with different ¢
training modes all in single-channel scenarios with the reference m™ 25
crophone signal = 1, where the single-microphone MMSE-based
dereverberation is applied at line 5. For comparison, lines 6-7 givi 2.0

the results with the beamformer-only systems, and the rest reveall:? . . .

. . 3: PESQ scores from the outputs of different system combina-
the performance of the combined systems (/)-(IV). Even though th%o%s with thg clean (anechoic) spgech as the refereynce signal
ideal matched training models are applied, ASR systems do suffer ’

from the reverberation effect. Generally, compared to the baseline In addition, a perceptual evaluation of speech quality (PESQ)
which employs the multi-condition training mode, dereverberation[35] has been conducted with the same test utterance used in
approaches in both single- and multi-microphone scenarios improveig. 2 (b) as an example. Fig. 3 shows the PESQ scores of the
the ASR performance, where beamforming techniques reduce aBifferent proposed systems. The scores of the systems with the DS
solute average WERs by 2-4% more than the single-microphoneeamformer are not shown since the SD beamformer consistently
MMSE estimator due to the additional spatial advantage brought bproduces higher PESQ scores, which is in consilience with the WER
multiple microphones (cf. lines 5-7). Moreover, the SD beamformes€valuation in Table 1. In general, multi-microphone dereverberation
surpasses the simple DS beamformer by about 2% absolute WEStrategies perform much better than single-microphone approaches,
reduction in all the proposed systems, which indicates that diffusénd still, (lll) leads to the highest average PESQ score among
noise field assumption holds for late reverberation, as also illustrated)-(IV) composed by beamforming and MMSE-based filtering.
in Fig. 2 (b) for T6 with largelso and low DRR value.

System (1) performs very similar to beamformer-only systems 6. CONCLUSION
where the MMSE estimators provide a higher benefit when comThis contribution explored possible combination architectures
bined with the DS beamformer (cf. lines 6-9). This can be parfor dereverberation by spectral suppression schemes and (multi-
tially explained by distortions of the diffuse field caused by the frontmicrophone) beamforming with the aim of improving ASR perfor-
MMSE estimators, particularly for the near-position test sets T1, T3nance in reverberant environments covering a wide ranggs@f
and T5, for which the WERSs increase compared to the SD bean{200 to 800 ms) and DRR (-2 to 15 dB). Results indicate that all
former alone. On the contrary, tipesterior MMSE estimator in (Il)  the combined systems are able to provide benefits for ASR systems
helps the beamforming system to improve the average WERSs by apnd specifically, the system (l11) combining the SD beamformer and
prox. 1%. Interestingly, (II) shows that beamformers do boost thehe MMSE estimator with the LRSV refinement by the beamformer
DRR values while leaving th&s, almost unchanged, as visualized coefficients achieves 27.7% average relative WER improvement
in Fig. 2 (a). Such phenomenon also proves the necessity of separabmpared to the baseline, as well as 17.3% average relative PESQ
ing the direct path from the RIR model in (4) in order to achieve ac-boost compared to the reverberant speech signal from the refer-
curate LRSV estimates. Compared to (l1), (Il1) gives slightly betterence microphone. Furthermore, it is also of interest to observe the
ASR performance, indicating that the spatially averaged LRSV verpotential of the spatial late reverberation coherence information to
sion together with the MVDR refinement in (11) achieves a more acenhance such complex systems that integrate a multitude of (poten-
curate LRSV estimate, especially for the diffuse fiEldg. In other  tially complementary) techniques to deal with reverberation; future
words, the spatial correlation introduced by the beamformer blurs thevork will apply coherence measures to further improve beamform-
MVDR-filtered RIR in (10) so that it can not exactly extract the true ing and the post-filtering.

I reverb. B MM SE S SD BEEE (1) (Il (1l EEEN(1V)

T1 T2 T3 T4 T5 T6
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