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ABSTRACT

We consider the problem of uncertainty estimation for noise-
robust ASR. Existing uncertainty estimation techniques im-
prove ASR accuracy but they still exhibit a gap compared
to the use of oracle uncertainty. This comes partly from
the highly non-linear feature transformation and from ad-
ditional assumptions such as Gaussian distribution and in-
dependence between frequency bins in the spectral domain.
In this paper, we propose a method to rescale the estimated
feature-domain full uncertainty covariance matrix in a state-
dependent fashion according to a discriminative criterion.
The state-dependent and feature index-dependent scaling
factors are learned from development data. Experimental
evaluation on Track 1 of the 2nd CHiME challenge data
shows that discriminative rescaling leads to better results than
generative rescaling. Moreover, discriminative rescaling of
the Wiener uncertainty estimator leads to 12% relative word
error rate reduction compared to discriminative rescaling of
the alternative estimator in [1].

Index Terms— Automatic speech recognition, noise ro-
bustness, uncertainty handling, discriminative adaptation.

1. INTRODUCTION

In robust speech recognition, uncertainty decoding has at-
tracted a lot of attention recently [2, 3]. The output of the
speech enhancement pre-processor is modeled as a Gaussian
distribution whose mean is the enhanced feature vector and
whose covariance matrix represents the estimated distortion
between the enhanced and the clean feature vectors. This un-
certainty representation is then used as input to the recognizer.
The features are more reliable when their uncertainty tends to
be low. Conversely, the features are unreliable when their un-
certainty tends to be high. The uncertainty is first computed
in the spectral domain [4] then propagated into the feature do-
main. Because of the non-linear transform applied to the input
spectral domain, propagation requires approximate methods
such as Vector Taylor series (VTS) [5], moment matching [6]
or unscented transform [7]. Due to this approximation and

to other simplifying assumptions such as Gaussian distribu-
tion and spectral domain independence, the estimated feature
uncertainty often underestimates the oracle uncertainty.

To overcome this, the estimated uncertainty can be
rescaled by a linear transformation [4, 8–10]. In the past
[4, 10], the scaling factors were optimized such that the re-
caled uncertainty estimates are close to the oracle estimates
irrespectively of the resulting state hypotheses. This can be
considered as a sub-optimal approach because the same scal-
ing factors are applied to the correct state hypothesis and to
the competing state hypotheses. Delcroix et al [8,9] proposed
to train the linear transformation according to a Maximum
likelihood (ML) criterion instead. They applied this approach
to a diagonal feature uncertainty matrix only and they showed
significant improvement. Recently, maximum mutual infor-
mation (MMI) [11] and boosted MMI (bMMI) [12, 13] were
successfully employed for supervised discriminative adapta-
tion of feature means and diagonal uncertainty matrices [1].
In this approach, the diagonal uncertainty matrix was esti-
mated directly in the feature domain as the squared difference
between noisy and enhanced features, which was shown to be
a poor estimate of uncertainty [4].

In this paper, we propose a method for state-dependent
and feature index-dependent discriminative rescaling of the
full feature uncertainty covariance matrix. Instead of estimat-
ing the uncertainty directly in the feature domain, it is esti-
mated in the spectral domain by using the Wiener filter then
propagated via VTS, resulting in a full uncertainty covariance
matrix in the feature domain. The discriminative criterion
used in this paper is frame-level bMMI which is a soft ver-
sion of MMI applied within each time frame. In the bMMI
criterion, wrong state hypotheses are given more weight than
the correct state hypothesis.

The organization of this paper is as follows. In Section 2
we introduce some notations and recall the principle of uncer-
tainty handling. Then in section 3 we introduce the rescaling
procedure and the optimization algorithm for the bMMI ob-
jective function. Section 4 presents some experimental results
on the 2nd CHiME challenge [14] data. Finally in Section 5,
we conclude and discuss some future work.
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2. UNCERTAINTY HANDLING

2.1. Uncertainty estimation

Multichannel speech enhancement techniques typically oper-
ate in the spectral domain by means of the short time Fourier
transform (STFT) or some auditory-motivated transform.
The observed multichannel signal xfn is assumed to be the
mixture of a single-channel target speech signal sfn and a
noise signal bfn, with f denoting the frequency index and
n the time frame index. Speech enhancement is achieved by
applying a multichannel filter, that can be decomposed into
a multichannel spatial filter (a.k.a., a beamformer) yielding
a single-channel signal xfn followed by a single-channel
spectral post-filter [15, 16]. In the following, we employ the
Wiener post-filter: the mean µ̂sfn

of sfn is estimated as [5,7]

µ̂sfn
=

vsfn

vsfn
+ vbfn

xfn (1)

with vsfn
and vbfn

the estimated short-term speech and noise
power spectra. The uncertainty is then quantified by the pos-
terior variance of the Wiener filter [7]:

σ̂2
sfn

=
vsfn

vbfn

vsfn
+ vbfn

. (2)

2.2. Uncertainty propagation

Uncertainty is propagated to the vector zn consisting of the
static Mel frequency cepstral coefficients (MFCCs) and the
log-energy. This vector may be computed using the nonlinear
function F

zn = F (vn) = L̄D̄log
(
M̄Ēvn

)
(3)

where vn is the concatenation of |sfn| and |sfn|2 for all fre-
quency bins f [10]. The matrices Ē, M̄, D̄ and L̄, are ex-
panded versions of the pre-emphasis matrix, the Mel filter-
bank matrix, the discrete cosine transform (DCT) matrix, and
the liftering matrix, respectively. The estimated mean and un-
certainty covariance matrix of zn are computed by VTS [10].
Both the estimated mean µ̂zn and covariance Σ̂zn of the static
MFCC zn are then transformed to the full feature vector con-
sisting of static and dynamic MFCCs. It results in an esti-
mated mean µ̂cn and an estimated uncertainty covariance ma-
trix Σ̂cn for each feature vector cn [10].

2.3. Generative uncertainty rescaling

The estimated feature-domain uncertainty is often underesti-
mated compared to the oracle uncertainty, that is the squared
difference between clean and enhanced features [17]. To
overcome this, the estimated uncertainty can be rescaled.
Delcroix et al proposed a linear rescaling transformation for
the case of diagonal uncertainty covariance matrices [8, 9].

In [10], we extended this approach to full uncertainty covari-
ance matrices as

Σ̂
scaled
cn = Diag(b)Σ̂cnDiag(b) (4)

where Σ̂
scaled
cn is the rescaled estimate and b is a vector of

scaling factors (one per feature dimension). We optimized the
scaling factors in a state-independent fashion such that the Eu-
clidean (EUC) distance between the diagonal of the rescaled
uncertainty covariance matrix and the oracle diagonal uncer-
tainty covariance matrix is minimum.

2.4. Uncertainty decoding

At the decoding stage, since the clean data cn are not exactly
known, one cannot directly compute the log-likelihood. We
assume that the acoustic emission probability of each state
is modeled by a Gaussian mixture model (GMM) trained on
clean data. The log-likelihood of each state is hence modified
by marginalizing over clean data as [16, 18]

p(cn|q) =
∑
m

wq,mN (µ̂cn |µq,m,Σq,m + Σ̂cn) (5)

where m is the component index and wq,m, µq,m, and Σq,m

are the weights, means, and covariances of all Gaussian com-
ponents for state q.

3. DISCRIMINATIVE UNCERTAINTY RESCALING

We now consider discriminative rescaling of the estimated un-
certainty covariance matrix using the bMMI criterion. Focus-
ing on the case of a diagonal uncertainty covariance and state-
dependent rescaling factors first, the rescaled uncertainty for
state q, feature i, and time frame n is given by

(σ̂scaled
q,ci,n)2 = b2q,i(σ̂ci,n)2 (6)

where (σ̂ci,n)2 is the i-th diagonal element of Σ̂cn and bq,i is
the i-th element of the state-dependent scaling vector bq . We
denote the resulting rescaled diagonal uncertainty covariance

matrix as Σ̂
scaled-diag
q,cn .

The goal is to find the vector bq so as to maximize the log-
likelihood ratio of the correct recognition hypotheses w.r.t.
the incorrect recognition hypotheses at the frame level. The
frame-level bMMI criterion is given by:

FbMMI =
∑
n

log

(
p(cn|qtruen ,bqtruen

)p(qtruen )∑
qn
p(cn|qn,bqn)p(qn)eεA(qn,qtruen )

)
(7)

where qn are the hypothesized states and qtruen is the correct
state. The term A(qn, q

true
n ) is equal to 0 if qn is the correct

state qtruen and to 1 otherwise and ε is a boosting factor to be
chosen.
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The derivative of FbMMI w.r.t. bq,i is given by

∂FbMMI

∂bq,i
=
∑
n

(
∂ log(p(cn|qtruen ,bqtrue

n
))

∂bq,i

−
∑
qn

γqn
∂ log(p(cn|qn,bqn))

∂bq,i

)
(8)

where

γqn =
p(cn|qn,bqn)p(qn)∑

q′n
p(cn|q′n,bq′n)p(q′n)eεA(q′n,q

true
n )

(9)

are the normalized boosted state posteriors obtained using
the forward-backward algorithm. Only the terms for which
qtruen = q or qn = q are eventually nonzero in (8). Comput-
ing the corresponding derivatives, we obtain

∂FbMMI

∂bq,i
=
∑
m,n

(1qtrue
n =q−γqn=q)ξq,m,nδq,m,i,nθq,m,i,n

(10)

with

ξq,m,n =
wq,mN (µ̂cn ;µq,m,Σq,m + Σ̂

scaled-diag
q,cn )∑

m′ wq,m′N (µ̂cn ;µq,m′ ,Σq,m′ + Σ̂
scaled-diag
q,cn )

(11)

δq,m,i,n = 1−
(µ̂ci,n − µq,m,i)2

σ2
q,m,i + b2q,iσ

2
ci,n

(12)

θq,m,i,n = −
bq,iσ

2
ci,n

σ2
q,m,i + b2q,iσ

2
ci,n

. (13)

The gradient is then averaged over all utterances.
Assuming that the training data are so-called “stereo data”

consisting of aligned clean and noisy signals, the correct state
hypothesis is computed by forced alignment of the clean
model on the clean training data. The scaling factors bq,i
are initialized using the state-independent EUC criterion, as
explained in Section 2.3 and detailed in [10]. The bMMI
objective function is then optimized using gradient ascent by

bq,i ← bq,i + η
∂FbMMI

∂bq,i
(14)

where η is the step size. After convergence, the rescaled diag-
onal and full uncertainty covariance matrices are given by (6)

and by Σ̂
scaled
q,cn = Diag(bq)Σ̂cnDiag(bq), respectively. The

whole procedure can also be applied in a state-independent
fashion.

4. EXPERIMENTS

We assess the proposed method on Track 1 of the 2nd
CHiME Challenge [14]. The task considers the problem

of recognizing commands being spoken in a noisy living
room from recordings made using a binaural manikin. The
target utterances are taken from the small-vocabulary Grid
corpus. Speech consists of 6-word utterances of the form
<command> <color> <preposition> <letter> <digit>
<adverb>. Each utterance has been convolved with a set of
binaural room impulse responses (BRIRs) simulating speaker
movements and reverberation. The utterances are read by 34
speakers and mixed with real domestic background noise at 6
different signal-to-noise ratios (SNRs). The task is to report
the ’letter’ and ’digit’ keywords and performance is measured
by keyword accuracy. The training set contains 500 clean
(reverberated but noiseless) utterances corresponding to 0.14
hour per speaker. The development set and the test set each
contain 600 utterances corresponding to 0.16 hour per SNR.

4.1. Experimental setup

Speech enhancement was applied to the development and test
datasets using the Flexible Audio Source Separation Tool-
box (FASST) [19] with same settings as in [10]. Speaker-
dependent acoustic models with diagonal GMM densities
were trained from the clean training set using the HTK base-
line provided by the challenge organizers [14]. They consist
of conventional left-to-right HMMs with a total of 250 states
each modeled by a GMM consisting of 7 Gaussian compo-
nents.

We estimated the optimal scaling factors both in a state-
independent and state-dependent way. The step size η was
fixed to 0.01. Training data for bMMI was collected randomly
from the development dataset and consists of 300 utterances
for each SNR level which corresponds to 5 min. The optimal
boosting factor ε was found to be 0.1. We used 50 iterations
of gradient ascent. For comparison, we also evaluated the per-
formance resulting from the state-independent EUC criterion
in [10] and from the state-dependent EUC criterion.

Uncertainty decoding was performed using the HTK
baseline with Astudillo’s patch1 for diagonal uncertainty
covariances and with our own patch for full uncertainty co-
variances2.

4.2. Experimental results

The resulting state-dependent scaling factors are shown in
Fig. 1. Most of them look similar to each other. However,
certain states such as q = 8 appear to be associated with
larger uncertainty and some other states such as q = 209
with smaller uncertainty. It can also be seen that the scaling
factors are larger for lower-order MFCCs and the log-energy
and their derivatives than for higher-order MFCCs and their
derivatives.

1http://www.astudillo.com/ramon/research/stft-up/
2http://full-ud-htk.gforge.inria.fr/
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Test set Development set
Method depend on state -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB Average -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB Average

no uncertainty no 73.75 78.42 84.33 89.50 91.83 92.25 85.01 73.25 78.02 84.33 89.25 91.75 92.18 84.80
EUC (diagonal uncertainty) [10] no 78.67 79.50 86.33 90.17 92.08 93.75 86.75 78.25 79.17 85.92 89.87 91.80 93.41 86.40

EUC (full uncertainty) [10] no 81.75 81.83 88.17 90.50 92.67 93.75 88.11 80.63 81.87 87.35 90.57 92.33 93.75 87.75
bMMI estimation (full uncertainty) no 82.75 83.33 88.17 90.50 92.75 93.50 88.50 82.50 83.17 88.00 90.28 92.17 93.17 88.21

EUC (full uncertainty) yes 82.00 82.75 88.25 90.75 92.67 93.50 88.32 81.67 83.00 88.17 90.33 91.75 93.00 87.99
bMMI estimation [1] yes 79.92 82.00 87.17 90.67 92.92 93.42 87.68 80.50 80.51 85.82 90.58 91.50 93.52 87.07

bMMI estimation (diagonal uncertainty) yes 82.50 83.44 88.50 90.28 92.17 93.50 88.40 81.50 82.64 88.00 90.75 91.83 93.42 88.01
bMMI estimation (full uncertainty) yes 83.50 84.08 88.75 91.33 93.03 94.51 89.20 82.75 83.50 88.17 91.75 93.00 93.67 88.80

Table 1. ASR performance expressed in terms of keyword accuracy (in %). Average accuracies have a 95% confidence interval
of ±0.8%

FEATURE INDEX

S
T

A
T

E
 I
N

D
E

X

 

 

10 20 30

50

100

150

200

250

10

20

30

40

50

Fig. 1. State-dependent scaling factors trained via bMMI.
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Fig. 2. Optimal scaling factors for state q = 193 which be-
longs to the digit ’four’.

The scaling factors obtained using state-independent
EUC, state-dependent EUC, and state-dependent bMMI are
compared in Fig. 2 for one particular state. The scaling fac-
tors trained by bMMI tend to be smaller than with EUC for
most feature indexes, with large differences for certain feature
indexes.

The resulting ASR performance figures are listed in Ta-
ble 1. The baseline without uncertainty propagation achieved
85.01% keyword accuracy. Full uncertainty covariance matri-
ces outperformed diagonal uncertainty matrices in all exper-
iments. More precisely, full uncertainty covariance matrices

improved the relative word error rate (WER) by 10% and 7%
with EUC and bMMI, respectively.

State-dependent scaling factors also improved perfor-
mance compared to state-independent scaling factors. The
achieved improvements correspond to 2% and 6% relative
WER reduction with EUC and bMMI, respectively.

Finally, the bMMI criterion outperformed the EUC crite-
rion for both state-dependent and state-independent rescaling
by 3% and 8% relative, respectively. The proposed bMMI
approach outperformed the bMMI approach in [1] by 12%
relative, due in part to the use of the Wiener uncertainty es-
timator and to that of a full uncertainty covariance matrix3.
An even greater improvement could be obtained in the future
by considering only keywords in the expression of the bMMI
criterion.

5. CONCLUSION

In this paper, we proposed a method for discriminatively
rescaling the estimated full feature uncertainty matrix at the
frame level. The resulting rescaled uncertainty covariance
matrix was confirmed to yield better ASR accuracy and im-
proved by 12% relative compared to [1]. Our results are
also among the top three for Track 1 of the 2nd CHiME
Challenge [14] and the best ones to our knowledge without
using other features than MFCCs or a multi-stream speech
recognizer. In future work, we will seek to develop a method
to estimate the inter-frame correlation between uncertainties
and test our approach on a medium vocabulary task. Using
DNNs to estimate parameters of speech and noise would also
be very promising.
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