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ABSTRACT

Far-field automatic speech recognition (ASR) is challeng-
ing, mainly attributed to the high reverberation in the record-
ings. A novel linear sparse prediction model has been pro-
posed to estimate and suppress reverberation. This model
considers reverberation as a mixture of early and late reflec-
tions of the direct signal and estimates the late reflection with
Lasso. It has been demonstrated that this approach is promis-
ing in improving perceptual intelligibility, however it is un-
known if the improvement can be propagated to ASR tasks.
This paper applies the Lasso-based dereverberation approach
to far-field speech recognition, and shows that it can deliv-
er significant performance improvement for ASR based on
deep neural networks (DNN). Particularly, we demonstrated
that an utterance-based Lasso is sufficient to obtain good per-
formance, which is important for applying the Lasso-based
dereverberation to real-time ASR systems.

Index Terms— far-field speech recognition, reverbera-
tion suppression, linear sparse prediction model, Lasso

1. INTRODUCTION

Speech signals recorded by far-field microphones suffer from
severe distortion, mainly attributed to the high reverbera-
tion in the room. This distortion often leads to considerable
performance reduction in automatic speech recognition (AS-
R) [?]. Roughly speaking, the far-field speech signal can be
regarded as a composition of the direct signal and its early
and late reflections, plus the background noise, formulated
by:

alt] = sft] * (relt] + r¢[t]) + nlt] (1

where z[t] is the received reverberated signal, s[t] the direct
signal, and n[t] the background noise. 7 [t] and 7 [¢] are the
early and late room impulse response (RIR) respectively, and
‘x’ denotes the convolution operator. It has been known that
the early reflection does not hurt intelligibility, while the late
reflection causes the most distortion [?, ?, ?]. Therefore, the
principle task of dereverberation is to remove late reflections
from reverberated and noisy signals.

A traditional dereverberation approach constructs an in-
verse filter to cancel (equalize) the reverberation process,
e.g. [2,2,2,?]. A known problem of this approach is that the
design of the inverse filter is little robust against an inaccu-
rate RIR estimation. Some recent researches focus on robust
inverse filter construction, e.g. [?].
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Another approach that does not request RIR is based on
the observation that the linear prediction residual of reverber-
ated signals is generally more Gaussian and so has lower kur-
tosis or skewness than clean signals. Therefore, kurtosis or
skewness can be used as the criterion to optimize the inverse
filter design [?, ?]. This approach is often used to remove the
early reflection which is the main source of phoneme smear-
ing.

The late reverberation is often addressed by the spectral
substraction approach that was presented in [?]. This ap-
proach assumes a statistical RIR model, e.g., a model that is
parameterized by the reverberation time. Based on this mod-
el, the late reflection can be estimated and subtracted from
the original reverberated signal. This approach was followed
by many researches including [?, ?]. Additionally, some re-
searchers combine the inverse filter approach and the spec-
tral substraction approach where the former is used to remove
the early reflection and the latter to remove the late reflec-
tion [?,?].

Another approach to deal with the late reflection is to
model the convolution process of reverberated signals by lin-
ear prediction. This model assumes that the direct signal is a
random variable following a Gaussian [?] or a Laplacian [?]
distribution. The late reflection is then inferred by estimat-
ing the regression coefficients under the maximum likelihood
(ML) criterion.

Finally, reverberated signals can be effectively enhanced
by using multiple microphones, e.g. [?,?,?], though our inter-
est is the more challenging single microphone dereverberation
task.

We highlight that most of the dereverberation approach-
es mentioned above aim at improving perceptual quality of
reverberated speech, with a few exceptions that focus on far-
field ASR [?,?]. Particularly, [?] carefully studied the lin-
ear prediction-based dereverberation [?] with a state-of-the-
art DNN-based ASR system.

Recently, Lopez et al. proposed a novel Lasso-based dere-
verberation approach which is based on a sparse linear predic-
tion model [?]. Different from the conventional linear predic-
tion approach that assumes a particular form of distribution on
the direct signal and infers the regression coefficients by M-
L [?2,?], the new method estimates the regression coefficients
by solving a sparse constrained linear regression problem (re-
fer to Section ??). A promising improvement on intelligibility
has been reported [?].

This paper studies the effectiveness of the Lasso-based
dereverberation approach in the context of DNN-based far-
field speech recognition. Particularly, we demonstrated that
an utterance-based Lasso is sufficient to obtain good perfor-
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mance, which is important for applying the Lasso-based dere-
verberation to real-time ASR systems.

The rest of the paper is organized as follows: Section ??
reviews the Lasso-based dereverberation approach, and Sec-
tion ?? presents the design details when applying the tech-
nique to far-field ASR. Section ?? presents the experimental
results, and the conclusions are drawn in Section ??. Sec-
tion ?? describes the relation of this work to the priors.

2. LASSO-BASED DEREVERBERATION

Following the notations in [?], let X denote the short time
Fourier transform (STFT) magnitude spectrum of the far-field
speech signal, and let k£ and n index the frequency channel and
the time frame respectively. According to the linear predic-
tion model, the reverberated signal can be written as follows:

Xk,n = Sk,n
5—1
+ ﬂk:,n,iXk,nfi
1=0
L—1
+ i Xk n—6—i
=0

where X}, ,, and Sy, ,, are the k-th STFT frequency channel
at frame n of the reverberated signal and the direct signal,
respectively. The second term corresponds to the early re-
flection, and the third term corresponds to the late reflection.
{@kn,i} and {Bk .} are the model parameters that need to
be estimated. The hyperparameter § specifies the maximum
delay of the early reflection, and L specifies the maximum
delay of the late reflection.

The conventional linear prediction approach assumes that
Sk,n follows a zero-mean Gaussian distribution, and the dere-
verberation is formulated as a procedure of ML parameter es-
timation. The sparse linear prediction model proposed in [?],
in contrary, formulates the parameter estimation as a sparse
constrained optimization problem, given by:

Z Ak n sz n—0—1
s.t. Z |k m,i| < A
=0

min |X;C "

aknz

2

where A is a regularization parameter, and a smaller A leads
to a more sparse solution, i.e., more zeros in {oy n;} . The
rationale behind this formulation is that we want to remove
impact of late reflections as much as possible, however the
overall removal should be bounded due to the energy decay of
late reflections. Note that (2?) is the well-known Lasso prob-
lem which was firstly proposed in [?], and can be efficiently
solved by the least angle regression (LARS) algorithm [?].

Fig. ?? shows the spectrum of a reverberated speech sig-
nal and the spectrum after the Lasso-based dereverberation. It
can be seen that the spectrum structure is less smeared after
the dereverberation. A significant improvement on intelligi-
bility has been reported [?].

(b) dereverberated 31gnal

(a) reverberated 51gnal o

Fig. 1. Effectiveness of the Lasso-based dereverberation.

3. LASSO-BASED DEREVERBERATION FOR
SPEECH RECOGNITION

Although promising in perceptual experiments, it is unknown
if the Lasso-based dereverberation can improve far-field AS-
R, particularly with DNN-based hybrid systems which are
highly sensitive to feature changes [?]. In addition, inferring
the regression coefficients «y , ; for each frame and each fre-
quency channel involves very demanding computation. We s-
tudy the performance of the Lasso-based dereverberation with
a DNN-based ASR system, and propose a fast implementa-
tion so that the method can be used in real-time ASR.

3.1. FBank element-based Lasso

First of all, since the modern DNN-based ASR systems use
FBank features, we conduct the Lasso-based dereverberation
on FBank channels. In our experiments, the FBank involves
40 Mel channels, which is much less than the number of fre-
quency channels of the raw spectrum (129 in our case). An-
other advantage of the FBank-based Lasso is that the derever-
beration component can be easily integrated in the frontend
pipeline of the ASR system. The optimization problem is the
same as (??), except that here k£ no longer indexes the STFT
frequency channel, but the Mel channel. This approach is de-
noted by the ‘element-based Lasso’.

3.2. Frame-based Lasso

The element-based Lasso assumes that the Mel channels are
independent when conducting dereverberation. It is natural
to suppose that the late reflection contributes to all channels
in the same way, so that the regression coefficients can be
shared. This leads to the frame-based Lasso, formulated as
follows:

mln ||X

O‘n7

Zanz n—6— z||
s.t. Z|am\ <A
1=0

where ||-|| represents the Frobenius norm, and X, is the entire
vector of a FBank feature at the n-th frame.

3)

3.3. Utterance-based Lasso

Both the element-based and frame-based Lasso need to com-
pute the regression coefficients « for each frame. This in-
evitably introduces significant computation in the frontend of
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ASR systems. Considering that in a stationary environmen-
t where the locations of the speaker and the microphone are
both unchanged, the regression coefficients should be shared
among all the frames. This means that we can conduct the
Lasso only once for each utterance, and then employ the re-
gression coefficients for all the frames of the utterance. This
approach is denoted by the ‘utterance-based Lasso’, and is
formulated as the following optimization problem:

L—1
minl||X,, — a; Xn_s—ill?
iy X - 3 I
1 “4)
s.t. Z o] < A
i=0

More aggressively, the Lasso can be conducted on a ref-
erence utterance, and the regression coefficients obtained can
be applied to all frames of the test utterances. This approach
can remarkably reduce the online computation and so is quite
suitable for real-time ASR. If the environment is dynamic
and involves relocation of speakers and/or microphones, the
utterance-based Lasso can be conducted every few utterances,
and so still can save a lot of computation. This will be left for
future research.

We highlight that the idea of sharing coefficients across
channels and frames was also investigated in [?]. Our work
focuses on ASR tasks where frames and utterances are the
natural computation units.

4. EXPERIMENTS

4.1. Experimental settings

The experiments were conducted with the wall street journal
(wsj) database. The setting is largely standard: the training
part used the wsj si284 training dataset, which involves 37318
utterances or about 80 hours of speech signals. The wsj de-
v93 dataset (503 utterances) was used as the development set
for parameter tuning in Lasso and cross validation in DNN
training. The wsj eval92 dataset (333 utterances) was used to
conduct evaluation.

Two approaches were used to generate the reverberated
version of the development data (dev93) and the evaluation
data (eval92). The first approach simulates the reverberation

by a tool provided by the REVERB 2014 challenge'. The
RIRs used to conduct the convolution were collected in three
rooms, and the noises recorded in these rooms were used to
further corrupt the speech signals, with the SNR set to 20dB.
The second approach replays the wsj recordings in a meeting
room (10m x 6m x 3m) with the microphone 1 meter away
from the speaker.

The baseline system was built using the original clean

training and development data. We used the Kaldi toolkit?
to conduct the training, and largely followed the wsj s5 recipe
for GPU-based DNN training. Specifically, the training start-
ed from a monophone system with the standard 13 dimen-
sional MFCC:s plus the first and second order derivatives. The
cepstral mean normalization (CMN) was employed to reduce
the channel effect. A triphone system was then constructed
based on the monophone system with features transformed by
LDA and MLLT. The final GMM system involves 351 phones
and 3447 Gaussian mixtures, and was used to generate state
alignment for DNN training.

Uhttp://reverb2014.dereverberation.com/
Zhttp://kaldi.sourceforge.net/

The DNN system was then trained utilizing the align-
ments provided by the GMM system. The feature used
involves 40-dimensional FBanks. The DNN architecture in-
volves 4 hidden layers and each layer consists of 1200 units.
The output layer is composed of 3447 units, equal to the
total number of Gaussian mixtures in the GMM system. The
baseline DNN model (Xent) was trained with the criterion
set to be maximum cross entropy. The stochastic gradient
descendent (SGD) approach was employed to perform the
optimization, with the mini batch size set to 256 frames. The
learning rate started from a relatively large value (0.008),
and was then gradually shrunk by halving the value when no
frame accuracy was observed on the development set. The
training stopped when the frame accuracy improvement on
the development data was too small (0.001).

4.2. Estimate \

First of all, we estimate the hyperparameter A for the Lasso-
based dereverberation. The development data corrupted by
the simulated reverberation is used to evaluate the perfor-
mance of the Lasso-based dereverberation with various .
The Xent model is used to conduct the experiments, and the
three dereverberation methods (element-based, frame-based,
utterance-based) are tested. The performance in terms of
word error rate (WER) is presented in Fig. ??.

' ' ' ' " [—Baseline
7 Element
—+Frame
Utterance|
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Fig. 2. WER vs. A with different dereverberation methods.

We observe that the baseline performance (without any
dereverberation) is 63.42%. By applying the Lasso-based
dereverberation, the minimum WERs are 59.38%, 60.09%
and 60.95% respectively for the element-based, frame-based
and utterance-based methods, and the corresponding optimal
Ais 0.17,0.15 and 0.14.

Regarding the computation cost, the element-based and
frame-based methods are similar although the later is slight-
ly higher due to the more difficult Lasso problem it involves.
For the utterance-based method, we conducted Lasso for each
utterance, and the computation speed is twice faster than that
of the other two methods. We also experimented to conduct
Lasso on a reference sentence and then apply the regression
coefficients to all the rest utterances. The preliminary exper-
iments show similar results can be obtained with the ‘global
Lasso’ as the ‘utterance-based Lasso’ reported here, however
the computation cost is almost negligible. This suggests that
the utterance-based method is particularly suitable for real-
time ASR.

4.3. Results on simulated data

With the optimal A obtained from the previous experiments,
we can test the performance on the evaluation set where the

5036



reverberated signals have been generated by simulation (refer
to Section 27?).

Besides the baseline Xent model, we also built three MPE
models using the dev93 data. The MPE models were trained
by sequence discriminative training [?] with the training cri-
terion set to be the minimum phone error (MPE). The three
MPE models are described as follows:

e MPE-1: trained using the clean dev93 data; to test ef-
fectiveness of the discriminative training on reverberat-
ed data.

e MPE-2: trained using the reverberated version of the
dev93 data; to test MPE adaptation.

e MPE-3: trained using the de-reverberated version of
the dev93 data; to test condition-matched MPE adap-
tation.

60, T T T T

Il Xent

[EMPE-1]
[ IMPE-2)
50| IMPE-3

40

WER %

20

10

Baseline Element Frame Utterance

Fig. 3. WER with various DNN models and various de-
reverberation methods. The reverberated data were generated
by simulation.

The results are shown in Fig. ??. The baseline group
presents the results without any dereverberation (thus no
MPE-3 result given). It can be seen that the MPE-1 model
is slightly better than the Xent model, confirming the effec-
tiveness of the discriminative training. However, the most
significant WER reduction is obtained with the MPE adap-
tation using the reverberated data (MPE-2). This result indi-
cates that the DNN model is sensitive to condition change,
and adaptation is essentially important to achieve reasonable
performance.

For the results with dereverberation applied, it can be seen
that the MPE adaptation with the reverberated data (MPE-2)
keeps contributing a large WER reduction, and the condition-
matched MPE adaption with dereverberated data (MPE-3)
provides a marginal further performance gain. In any case
(Xent and MPEs), the Lasso-based dereverberation delivers
clear performance improvement compared to the baseline
results.

When comparing the three dereverberation methods,
it seems that with the Xent model, the frame-based and
the utterance-based method outperform the element-based
method. However, with various MPE models, the three mod-
els perform similarly, although the element-based method
is slightly better. This is an interesting result because the
utterance-based method is much faster than the other two,
and the marginal performance lost suggests that it is suitable
to be applied to real-time ASR systems.

4.4. Results on real reverberated data

The last experiment evaluates the three dereverberation meth-
ods with the real reverberated data recorded in a meeting

room (refer to Section ??). As in the previous section, three
MPE models were trained with the development data in the
clean, reverberated and dereverberated conditions respec-
tively. The results are presented in Fig. ??. We can draw
similar conclusions as with the simulated data, except that
here the element-based dereverberation method outperforms
the other two even with the Xent model. Again, the utterance-
based method achieves significant performance gains over the
baseline, and obtains similar performance as the best element-
based method, however with much less computation.

Ml Xent

60 EMPE-1|
[CIMPE-2)
EVPE-3]

Baseline Element Frame Utterance

Fig. 4. WER with various DNN models and various de-
reverberation methods. The reverberated data were collected
in a real meeting room.

5. CONCLUSION

This paper experimented with a Lasso-based dereverberation
approach in DNN-based speech recognition. The experi-
mental results demonstrated that the new dereverberation ap-
proach can deliver significant performance improvement on
both simulated and real reverberated speech data. Moreover,
condition-matched MPE adaptation leads to marginal but ad-
ditional gains. We also demonstrated that the utterance-based
method 1s much faster than the element and frame-based
methods with marginal performance lost, so it is suitable
to be applied to real-time ASR. The future work involves
investigating the Lasso-based approach in more complex sit-
uations, such as dynamic acoustic environments and highly
non-Gaussian noises.

6. RELATION TO PRIOR WORK

This work is based on the sparse linear prediction model pro-
posed in [?]. The main contribution of the paper is to study
the effectiveness of the Lasso approach on DNN-based AS-
R tasks. We confirmed that this approach can improve ASR
performance and is complementary with the MPE adaptation.
We also proposed an utterance-based method to save the com-
putation cost, which makes it possible to apply the technique
in real-time systems.
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