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ABSTRACT

In this paper we present a confidence estimation system using recur-
rent neural networks (RNN) and compare it to a traditional multi-
layered perception (MLP) based system. The ability of RNN to cap-
ture sequence information and improve decisions using processed
history was main motivation to explore RNN’s for confidence esti-
mation. In this paper we also explore two subtle variations of con-
fidence estimator: one that uses objective extracted over the entire
sequence for training, and other that uses dynamic programming to
decode and estimate confidence on all the words of the sequence
jointly.

In our experiments, we observed that for a constant false positive
(FP) rate of 3% we can secure a relative reduction of 10% in false
negative (FN) rate when we replaced a MLP in confidence estimator
with a RNN. We also observed that relative gains achieved by a RNN
based confidence estimator are directly proportional to the number
of word in the utterances.

Index Terms— Confidence Measures, Word Identity, Recurrent
Neural Network

1. INTRODUCTION

Automatic speech recognition (ASR) systems used today are able to
produce high quality transcriptions, due to a combination of newer
modeling techniques (e.g. deep neural networks), ability to consume
and process large training and test datasets. As a result ASR systems
are getting widely deployed, with voice search on smart-phones to
voice controlled devices like Xbox-One. For these types of appli-
cations of ASR systems it has become imperative to provide some
measure of confidence on the accuracy of the output of a recognizer.
Depending on the requirement, a recognizer could produce either
word or sentence/phrase confidence estimates.

Over the years various techniques have been proposed to esti-
mate word confidences, Jiang in his survey paper [1] provides a com-
prehensive overview of techniques developed for estimating confi-
dences. These techniques can be broadly classified into three cate-
gories. In the first, posterior probability of the word given the acous-
tic signal is regarded as the confidence measure [2, 3, 4, 5, 6]. The
second set of techniques treat confidence estimation as a statisti-
cal hypothesis testing problem [7, 8, 9]. The third set of methods
build a two-class classifier using features (also referred to as pre-
dictors) generated from an ASR engine during the decoding process
[7,10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. The parametric confidence
estimation techniques (hypothesis-testing and classifier based) sys-
tem usually tend to outperform a word posterior based systems, this
is due to the fact that parametric techniques can use posteriors as one
of the input parameters and improve the performance of a system us-
ing additional features from the engine.
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Classifiers based estimators can be improved by either improv-
ing the input predictors as demonstrated by Huang et. al. in [19],
or by improving the classification methodology. Over the years var-
ious types of classifier have been explored in literature e.g. linear
discriminant functions [7, 10], generalized linear models [11, 12],
Gaussian mixture models [13], neural networks [14, 15, 19, 20] and
conditional random fields [21, 22] to name a few

The confidence estimator presented in this paper is based on
third category of estimators. We present the use of recurrent neural
network (RNN) as a classifier that also estimates confidences on the
two classes (positive/negative). In recent years RNN have been suc-
cessfully applied to tasks like language modeling [23] and language
understanding [24]. RNN’s have achieved great success at both these
tasks mainly due to the presence of a recurrent layer which models
context and history with relative ease. This leads us to believe that
RNN’s will be especially helpful in improving confidences estimates
for longer utterance which have multiple words (e.g. short message
dictations). To our knowledge, our work is the first to apply RNN’s
to the task of confidence estimation.

The remainder of this paper is organized as follows. Section 2
describes the topology of RNN’s we use for confidence estima-
tion. Section 3 outlines the experimental setup and discusses the
results. Section 4 presents concluding remarks on the performance
of RNN’s.

2. RECURRENT NEURAL NETWORKS FOR
CONFIDENCE ESTIMATION

The RNN’s presented in this paper use a modified form of the clas-
sical Elman RNN architecture [25]; all the modifications were per-
formed to make the classical RNN more suitable for the task of con-
fidence estimation. This architecture is illustrated in Figure 1, where
the RNN is ‘unrolled’ across time to cover feature inputs for three
consecutive words. The topology of RNN used for confidence es-
timation is simple; it has three layers, an input layer at the bottom,
a hidden layer in the middle with recurrent connections (shown as
dashed lines), and an output layer at top. The layers in the network
are connected with weights denoted by the matrices U, W, and V.
The input layer matrix U is an augmented matrix that also includes
bias.

The RNN’s used for either language understanding or language
modeling have a discrete input layer x(¢) with dimensionality equal
to the size of the vocabulary, but for confidence estimation, however,
input is a set of features in continuous space (described in Section
3.1), these features are usually derived from a word lattice. Due
to the continuous nature of the feature space we do not employ the
traditional 1-of-N coding for the input layer. The output layer y (¢)
has two nodes that emit confidence scores indicating if the word is
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Fig. 1. Recurrent Neural Network for Confidence Estimation

correct or incorrectly identified. The recurrent hidden layer s(t) by
design is responsible for maintaining a representation of utterance
history and therefore, provides all the necessary context. The values
in the hidden and output layers are computed as shown in equations
(1a) and (1b)

s(t) = f (Ulx(t); 1] + Ws(t-1)) (1a)
y(t) =g (Vs(t)), (1b)
where
1 elm
fQ) = Trel g(lm) ()

g
k

The RNN is trained using standard back-propagation through time
algorithm to maximize the data conditional likelihood:

[TPG®x)...x(#) 3)

Note that this model has no direct temporal interdependence at the
output layer; this is due to the fact that the output probability distri-
bution is strictly a function of the hidden layer activations, which in
turn depend only on the input features derived over a words segment
(and its own past values). Thus, the most likely sequence of labels
(correct/incorrect) can be output with a series of online decisions:

y*(t) = argmax P(y(t)[x(1) ... x(t)) 4)

This RNN topology is efficient yet simple. It does not require a dy-
namic programming search over labels to find the optimal sequence
of output labels. However, we have observed that it is beneficial in
some case to find the optimal correct/incorrect label sequence using
dynamic programming. More details about training and sequence
decoding using RNNs can be found in [24].

3. EXPERIMENTS AND RESULTS

3.1. Features for Confidence Estimation

All input features were derived from the lattice. These features were
aggregated and averaged within word boundaries avoiding silence
segments. Some of the features that we used as inputs to the con-
fidence estimator are: normalized acoustic score, normalized back-
ground model score, normalized noise score, normalized LM score,

normalized duration, LM perplexity, active channels, LM fanout and
active senones. We used 16 features derived from the lattice as an
input to the confidence estimator more details about these features
can be found in [19].

3.2. Data, Models and Topologies

We conducted experiments using Microsoft’s proprietary short mes-
sage dictation and voice search data. The data used in our exper-
iments was divided into three sets: 1) Train, 2) Validation, and 3)
Test sets. The training set consists of 82K utterances and test set
consists of 13K utterances (67K words), 2% of the training data was
set aside for validation. All confidence estimation algorithms pre-
sented in this paper used same acoustic and language for all experi-
ments. The RNN’s used in our experiments have been trained using
either cross-entropy or sequential criterion [26]. The weight matri-
ces of both type of networks were initialized randomly at the start of
training.

While experimenting on the validation set, we observed that the
performance of the MLP confidence estimator peaked with 10 neu-
rons in the hidden layer. Any further addition of hidden units did not
result in a significant benefit, and therefore all MLP’s presented in
this paper have a single hidden layer with 10 neurons. This observa-
tion in-line with previous use of MLP for confidence estimation e.g.
[27] uses an MLP with 6 or 8 nodes in the hidden layer.

The RNN based confidence estimator also followed trend similar
to a MLP with respect to the nodes in the hidden layer. We did not
observe any improvement by increasing the size of the hidden layer
beyond 10 units. We also noticed that increasing the window of error
back propagation through time (BPTT) beyond 4 did not yield any
further improvements on the validation set.

3.3. Evaluation Metric

The performance of all our confidence estimators was evaluated us-
ing two metrics: receiver operating characteristic (ROC) curve was
the primary tool used to compare different systems. we also used
area under a ROC curve as the second metric.

A ROC curve in our case is a plot of false positive rates (FPR)
against the true positive rates (TPR) rates calculated at the same con-
fidence threshold value. A TP event at threshold ‘t’is the aggregate
of all the words in the test set that are correctly recognized according
to transcripts and have confidence higher than the selected threshold
‘t’; equivalently words that are mis-recognized with a confidence
higher than ‘t’are aggregated to report a FP event.

We also use area under the ROC curve (AUC) as an alternative
metric to measure performance of a confidence estimator. The area
under a ROC curve is a good indicator of the overall ability of the
confidence estimator to discriminate between correct and incorrectly
recognized samples. Theoretically the best estimator would have
an AUC of 1.0, therefore, to compare the performance of a confi-
dence estimation algorithms/modules one needs to only measuring
the closeness of its AUC to 1.0.

3.4. Deep Neural Networks for Confidence Estimation

In recent years deep neural networks (DNN) have been successfully
applied various classification tasks. In speech DNN have proven to
be extremely successful as demonstrated in [28]. During experimen-
tation we also performed tests where we replaced the simple MLP
with a network that had multiple hidden layers.

We experimented with DNN that had upto 3 hidden layers and
10 to 100 hidden nodes. A DNN using the feature set described in
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Section 3.1 did not demonstrate any significant improvement in AUC
when compared to the MLP with 10 hidden nodes. This observation
is similar to the results presented in [19, 29]. Our belief is that the
features used in our task for confidence estimation are not very com-
plex, and hence do not benefit from the ability of DNN to extract and
distill discriminative information using multiple hidden deep layers.

Therefore, for the rest of the experiment and results section we
do not include DNN as a comparative methodology for confidence
estimation.

3.5. Results and Discussion
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Fig. 2. ROC curves for different confidence estimators

The Figure 2(a) compares a RNN based system to a MLP based
confidence estimator. We can observe from the ROC curves that a
RNN is better than a MLP specifically in the regions of low FPR.
The same chart also contains ROC curves for a confidence estima-
tor where the output of a RNN was sequential decoded using bigram
language model trained on the positive/negative symbols. The RNN
and bigram language models was trained using the same data set.
As we can observe from the figure, we obtain the biggest gain in
AUC by replacing a MLP (AUC of 0.763) with a RNN (AUC of
0.78) (a relative improvement of 7.674% in AUC). Further by using
sequence decoding, we observe a small incrementally improvement

(relative AUC improvement of 7.676%) in the performance of the
estimator. This result highlights the fact that the recurrent layer in
the network is able to capture and extract enough information from
the history so as to reduce any benefits that are traditionally achieved
from sequential decoding. The Figure 2(b) compares a cross-entropy
trained RNN system to a sequentially trained RNN system. Sequen-
tial training does not provide any additional benefit over a cross en-
tropy trained RNNs.
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The presence of a recurrent layer in RNN’s provides the model
with additional insight in the past behavior of the recognizer. The
estimator can then exploit this ability to provide a more refined es-
timate on the confidence. In contrast our current experimental MLP
has no notion of context and so it treats every word in an utterance
as an independent isolated event; this diminishes MLP’s power to
model and benefit from the context. It is however possible to add
context to our current MLP setup, we can do so by combining the
features from adjacent words. Unfortunately this method of mod-
eling context make handling of utterances with different number of
words difficult in our current infrastructure, we were therefore un-
able to cover those experiments in this paper. To measure and quan-
tify impact of this context retention we generated ROC for a word at
specific location in the utterance. These ROC curves are presented in
Figure 3 and they highlight differences between the two confidence
estimation systems. The ROC curves in the Figure 3(a) are gen-
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Fig. 4. ROC curves for different confidence estimators w.r.t. utterance length

erated by using only the labels and confidences of first word in an
utterance. A MLP based confidence estimator is better at predicting
the correct label for the first word of a utterance than any of the RNN
based estimators as seen from the figures above. A recurrent layer in
a RNN is the cornerstone of its performance but, for the first word in
an utterance RNN based confidence estimator has not built sufficient
history to make a sound decision and hence it suffers for short utter-
ances. These observations are also reflected in the AUC’s (measured
for the first word ROC curve) for each system, AUC for RNN based
estimator is 4% relatively worse than its MLP counterpart (Table 1).
In the same vein Figure 3(b) shows the plot of ROC curves for the
6" word in all the utterances from the test set. We can observe that
the ROC for a RNN based estimator is significantly better than that
of a MLP based estimator. In the same chart (Figure 3(a)) we can
also observe that a sequentially trained RNN has a slight edge over
a cross-entropy trained RNN. This observations from the figure are
also reinforced when we look at the relative changes in the AUC pre-
sented in Table 1. The MLP base confidence estimator has an AUC
of 0.776 and 0.794 for the first and sixth word respectively. From the
observations and results presented in this section we can now state
that for longer utterances, RNN based estimator is more accurate at
assigning a word an appropriate confidence value than a MLP based
estimator, and a sequentially trained RNN has the best in class AUC.

Table 1. Relative changes in AUC of RNNs wrt MLP estimator.

Rel changes in AUC(%)
Type 1°¢ word ‘ 6" word
RNN -4.12 8.37
RNN w Seq Decoding -3.68 9.94
Seq-RNN -3.39 10.61

In light of the above observations we expect that a RNN based
estimator will be better at correctly estimating confidences for longer
utterances, and the performance should be directly correlated with
length of the utterances. The set of plots in Figure 4 show ROC
curves of different estimators when input to the estimator is re-
stricted to utterance with specific number of words. It is evident
from Figure 3(a), that for a single word utterance traditional MLP
based confidence estimators has the best in class performance, this
behavior however start changing with increase in the length of the
utterance. RNN based estimators start surpassing a MLP based sys-

tems for utterances with two or more words, and the gap widens with
each additional word in the utterances. This trend in improvement
of performance can be observed from figures 4(a) through 4(c).

The Table 2 lists relative improvement in true positive rate (TPR)
for different confidence estimation systems at a constant 3% false
positive rate. We can again observe that sequentially trained RNN
do have slight edge over cross-entropy trained RNN’s.

Table 2. Relative TPR improvement for different confidence estima-
tors w.r.t to MLP baseline at 3% FPR.

| Type of MLP | Rel TP improvement(%) |
RNN 8.76
RNN w Seq Decoding 7.72
Seq-RNN 10.20

As we have observed throughout this section RNN’s lag MLP
when it comes to predicting correct confidence for the first word of
an utterance, but the performance quickly and significantly improves
with length of the utterance. This gain on longer utterances is signif-
icant enough to overcome the deficit caused over the first word and
on an average RNN’s have a much better performance than it MLP
based counterpart (See Figure 2(b)).

4. CONCLUSIONS

In this paper we presented a RNN based confidence estimation sys-
tem and compared it to a traditional MLP base system. We also
presented two variations of the RNN system, one with sequential de-
coding and the second trained with sequential criterion. The ability
of RNNs to model context is extremely useful for confidence esti-
mation, and proves to be more effective for longer utterances. We
also observed that sequential decoding and sequential training does
yield small incremental improvement to the baseline RNN systems.
For the proposed confidence estimator we also observed an approxi-
mately 10% reduction in false negative rates over the baseline MLP
system. Since a MLP based estimator is better at short (one-word)
word utterances than a RNN based estimator, we intend to investi-
gate a topology that can combine the two systems to build a better
confidence estimator.
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