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Abstract 

Despite the fact that several sites have reported the 

effectiveness of convolutional neural networks (CNNs) on 

some tasks, there is no deep analysis regarding why CNNs 

perform well and in which case we should see CNNs’ 

advantage. In the light of this, this paper aims to provide some 

detailed analysis of CNNs. By visualizing the localized filters 

learned in the convolutional layer, we show that edge detectors 

in varying directions can be automatically learned. We then 

identify four domains we think CNNs can consistently provide 

advantages over fully-connected deep neural networks 

(DNNs): channel-mismatched training-test conditions, noise 

robustness, distant speech recognition, and low-footprint 

models. For distant speech recognition, a CNN trained on 

1000 hours of Kinect distant speech data obtains relative 4% 

word error rate reduction (WERR) over a DNN of a similar 

size. To our knowledge, this is the largest corpus so far 

reported in the literature for CNNs to show its effectiveness. 

Lastly, we establish that the CNN structure combined with 

maxout units is the most effective model under small-sizing 

constraints for the purpose of deploying small-footprint 

models to devices. This setup gives relative 9.3% WERR from 

DNNs with sigmoid units.  
 

Index Terms: Convolutional neural networks, DNN, low 

footprint models, maxout units 

1. Introduction 

Deep neural network (DNN) based acoustic models have been 

shown by many groups [1][2][3][4][5] to outperform the 

conventional Gaussian mixture model (GMM) on many 

automatic speech recognition (ASR) tasks. Recently, several 

sites have reported some successful results using deep 

convolutional neural networks (CNNs) as opposed to standard 

fully connected DNNs. By convolving along the frequency 

axis of the log-Mel spectrogram with the proposed limited-

weight-sharing structure, [6] reported 8% relative reduction in 

phone error rate over DNNs on the TIMIT task and a similar 

gain on an 18-hour voice search task. Significant gains on 

Broadcast News and the Switchboard corpus are also reported 

in [7][8] by combining CNNs with speaker-adaptive features 

and sequence training techniques. Later there were several 

attempts to apply CNNs to different tasks, including low-

resourced scenarios [9] and distant speech recognition [10].  

There are two main properties of CNNs that can 

potentially improve speech recognition performance. First, 

pooling at a local frequency region makes CNNs more robust 

to slight formant shifts due to speaker or speaking style 

variation. Second, sparse local connections of the 

convolutional layer require far fewer parameters to extract 

low-level features which avoids over-fitting. However, both 

properties become less attractive compared to DNNs if an 

application has large amounts of training data, as a DNN of 

sufficient size can also learn to normalize variance in the 

feature space [11] given ample and diverse training data. 

Generally speaking, the gain of CNNs over DNNs decreases 

as the amount of training data increases. On the other hand, 

[12] reported that CNNs do not work well for semi-clean data 

in the Robust Automatic Transcription of Speech (RATS) 

program. Therefore, we are interested to find out in which case 

we should see CNNs’ advantage. In other words, what are the 

tasks where DNNs cannot easily achieve their success by 

simply adding data?  

We start with examining the spectro-temporal filters 

learned by CNN modeling to verify the structure design and to 

understand what kind of low-level features have been 

extracted. Then we use Aurora 4 to analyze CNNs’ 

performance in different conditions. It is observed [12] that 

CNNs work better than DNNs for noisy channels in the RATS 

program. Following this direction, we aim to perform separate 

analysis for CNNs’ ability to handle additive noise and 

channel mismatch, respectively. As CNNs are shown [13] to 

extract more invariant feature representation, we expect it has 

higher tolerance to highly distorted speech signals, e.g. distant-

talking speech distorted by room reverberation and additive 

noise. On a 100-hour meeting room task, CNNs obtained 

relative 6-8% WERR over DNNs when trained on 

beamformed distant speech [10]. In this paper, we further 

show that the more distorted the distant speech signals are, the 

more robust CNNs are compared to DNNs. Here we work on a 

much larger-scale task, Xbox Kinect market search, where 

1000 hours of audio data are used for acoustic model training. 

Another area we think CNNs could be good model 

candidates is for small-footprint applications on devices. A 

common way to fit DNN-based acoustic models on devices is 

to reduce the DNN model size by reducing the number of 

nodes in hidden layers and the number of senone (tied HMM 

states) targets in the output layer. Although the DNN model 

size is reduced, significant increase in word error rate is also 

observed [14]. We hypothesize that the weight-sharing 

structure of the convolutional layer and dimensionality 

reduction by max-pooling provides a good trade-off point 

between parameter reduction and ASR performance. On the 

other hand, we found that the choice of neuron types is also 

critical for maximizing the model capacity given the limited 

parameter budget. Maxout units [15] give the best WER 

among other units including sigmoid units and rectified linear 

units (RELU) [16][17]. Combining the CNN structure and 

maxout neuron types, we are able to reach the best 

performance for the deep network structure with small 

footprint. 

In Section 2, we describe our CNN architecture and 

present the learned convolutional kernels for the speech task. 

We then analyze the performance of CNNs using the Aurora 4 

task and the Kinect distant speech recognition task in Section 

3. In Section 4, we present our study on small-footprint 

models. Finally, we summarize our study and conclude the 

paper in Section 5. 
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2. Convolutional Neural Networks for 

Speech 

In this paper, all experiments are conducted under the context-

dependent deep neural network hidden Markov model (CD-

DNN-HMM) framework where a DNN or CNN is used to 

classify the acoustic input features (log-Mel filter banks in our 

case) into classes corresponding to the HMM states (tied states 

or senones, more specifically). We compute the HMM’s state 

emission probability density function by dividing the state 

posterior derived from DNNs/CNNs by the prior probability of 

the considered state calculated from the training data. 

 

2.1. CNN architecture 

As shown in Figure 1, a CNN consists of three types of layers, 

convolutional layers, pooling layers, and fully-connected 

layers. In a convolutional layer, each neuron takes inputs from 

a small rectangular section of the previous layer, multiplying 

those local inputs against the weight matrix W. The weight 

matrix, or the localized filter, will be replicated across the 

entire input space to detect a specific kind of local pattern. All 

neurons sharing the same weights compose a feature map. A 

complete convolutional layer is composed of many feature 

maps, generated with different localized filters, to extract 

multiple kinds of local patterns at every location. In our 

implementation for speech recognition, the input space is a 2-

D plane with frequency and time axis. In particular, each 

dimension of the frequency axis corresponds to one of 40 log-

Mel filter bank coefficients. We only apply convolution along 

the frequency axis, leaving HMMs to handle temporal 

variations because most recent works show that shift-

invariance in frequency is more important than shift-

invariance in time [6][7]. 

After each convolutional layer, there may be a pooling 

layer. The pooling layer similarly takes inputs from a local 

region of the previous convolutional layer and down-samples 

it to produce a single output from that region. One common 

pooling operator used for CNNs is max-pooling, which 

outputs the maximum value within each sub-region. By down-

sampling, we not only reduce the computational complexity 

for the upper layer but also achieve a degree of robustness to 

slight position change of local patterns. There are also other 

pooling strategies, like lp and stochastic pooling, which might 

improve generalization [8]. Since there have not been shown 

significant gains by lp or stochastic pooling, we chose to adopt 

max-pooling as our pooling strategy in this paper. Finally, 

after one or more convolutional-pooling building blocks, fully-

connected layers will take the output of all neurons from the 

previous layer and apply high-level reasoning on these 

“invariant” features. 

While it is possible to stack multiple building blocks of 

convolutional and pooling layers, our experiments found that 

additional convolutional blocks does not result in further 

improvement. Therefore our architecture adopts one 

convolutional layer followed by one max-pooling layer and 

then four fully-connected layers.  

2.2. Visualization of learned filters 

Figure 2 shows some spectro-temporal filters learned by the 

convolutional layer using 60 hours of short message dictation 

training data. The vertical dimension represents 5 frequency 

bands, and the horizontal dimension represents 15 successive 

frames. These filters look like 2-D Gabor filters [18] in 

varying directions, including horizontal, vertical and diagonal 

filters. Different from the observation in [19] that diagonal 

filters are not present in the convolutional layer with random 

initialization, we found that a CNN is capable of learning 

different spetro-temporal filters including diagonal ones, 

which we think forms a powerful analyzer to detect different 

speech phenomena in a spectrogram [18].  

 

 

3. Invariance Property of CNNs 

3.1. Noise robustness and channel mismatch 

We first analyze the performance of CNNs with Aurora 4 [20], 

a noise-robust medium-vocabulary task. The clean-condition 

training set consists of 7138 utterances recorded with a 

Sennheiser microphone, corresponding to 14 hours of speech 

data. There are totally 14 evaluation sets. There is also a multi-

condition training set, containing data recorded with the 

Sennheiser microphone and a secondary microphone, 

respectively, in clean condition or corrupted with 6 types of 

noise. Two clean evaluation sets (A and C) are recorded with 

the Sennheiser microphone and another secondary 

microphone, respectively. The remaining 12 subsets are 

divided into two groups (B and D), recorded with two types of 

microphone respectively and corrupted with 6 types of noise, 

same as the training set.  

The baseline GMM-HMM system has 1206 senones, each 

with 16 Gaussians trained using maximum likelihood 

estimation criterion on the clean training set. The GMM-HMM 

system is used to align the training data to get the forced 

alignment for training the DNN-HMM system. Decoding is 

performed with the task-standard bigram language model. The 

baseline DNN is trained with 40-dimensional log-Mel filter-

bank features and their first- and second-order derivative 

features. The input layer is formed from a context window of 

11 frames. The DNN has 5 hidden layers with 2048 hidden 

units in each layer and the final soft-max output layer has 1206 

units, corresponding to the senones of the HMM system. The 

network is initialized with pre-training and then fine-tuned 

using 25 iterations of back propagation. For the CNN, the 

bottom hidden layer is replaced with a convolutional layer 

followed by a max-pooling layer. The convolutional layer has 

160 filters, each of which has size of 5 frequency bands and 

their first- and second-order derivative values, with 11 

successive frames. The 160 feature maps are generated by 

Figure 1. CNN architecture for speech recognition 

 

 

Figure 2. Sampled spectro-temporal filters of size 

5x11 learned by the convolutional layer  
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convolving each filter along the frequency axis. The following 

max-pooling layer outputs the maximum values over a non-

overlapping window covering the outputs of every three 

frequency bands in each feature map, down-sampling the 

overall outputs of the convolutional layer to three times 

smaller. The outputs of the max-pooling layer are fed to the 

fully-connected layer structure. Due to the usage of small 

localized filters, the number of parameters used in the CNN 

(19M) is slightly less than the number in the DNN (21.9M). 

Both types of models are trained based on the cross-entropy 

criterion. 

We first compare the performance of DNNs vs CNNs 

using clean training data in Table 1. Given similar amounts of 

training weights, CNNs consistently outperform DNNs across 

different test conditions regardless if the acoustic conditions 

are mismatched or not, producing 3.9% relative error 

reduction on average. This is consistent with our expectation 

that CNNs have better generalization ability than DNNs 

especially when the amounts of training data are limited. 

Among different test conditions, the largest relative gain 

(16.2% relative error reduction) is observed on Test Set C 

consisting of clean test data with microphone distortion. As 

those recordings are from various microphones mismatched to 

the one used in the clean training set, the improvement 

indicates that one of the biggest strengths of a CNN is its 

robustness to unseen/mismatched channel conditions. Note 

that utterance-level mean normalization is performed as part of 

data pre-processing stage (which is orthogonal to the zero-

mean unit-variance normalization for neural network inputs), 

so we examine the effectiveness of CNNs after the basic 

channel compensation method is applied. We also see that the 

CNN provides 2.1% relative error reduction from the DNN for 

Test Set B where various types of noises are added. The gain 

is smaller than Test Set C, suggesting that CNNs are less 

effective in handling additive noise than channel distortion.  

There are two possible factors in CNNs that might 

contribute to the robustness to environment/channel mismatch. 

One is that the weight-sharing structure of the frequency 

localized filters reduces the number of free parameters for the 

convolutional layer. This effective way of controlling model 

capacity could achieve better generalization, as opposed to 

adopting a fully-connected layer in the input layer. The other 

important factor is the use of max-pooling on top of the 

convolutional layer which makes CNNs more robust to 

translational variance in the input space. To be more specific, 

the channel/noise distortion affects the spectrum in some local 

filter banks. Due to the locality processing using frequency 

localized filters and the invariance processing via max-

pooling, features processed by the convolution and pooling 

layers become more robust to distortion. Compared to DNNs 

which fully connect the inputs from all the filter banks, CNNs 

produce more invariant high-level features for the following 

network layers to perform the classification.  

We are interested in knowing which factor is more 

important for the effectiveness of CNNs for Aurora-4 

scenarios. Therefore we experimented with removing the max-

pooling layer after the convolutional layer and directly 

connected the output of convolutional layer to the fully-

connected layers. In other words, it is a CNN without any 

max-pooling. This model is denoted as CNN-NM in Table 1. 

Trained on the clean data, the WER is even worse than the 

clean DNN, as shown in the last row of the Table 1, which 

suggests the essential role of max-pooling in CNNs.  

We also compare the performance of DNNs vs CNNs 

trained on multi-conditioned data in Table 2. The overall 

relative 2.9% error reduction by the CNN is slightly smaller 

than that achieved by the clean-trained models, showing that 

generalization to unseen data is the main advantage of CNNs. 

But the gain on Test set C, the channel mismatch case, is still 

significant (8.6% WRR) and remains largest among all test 

conditions. 

 

 

 

3.2. Beamformed distant speech 

We next examine the effectiveness of CNNs in the context of 

distant speech recognition. In this experiment, the training data 

are about 1000 hours of anonymized audio data recorded by 

the Kinect device and have been processed by beamforming. 

The test set consists of 18683 utterances recorded at 1, 2, or 3 

meters away from the Kinect device. The DNN and CNN are 

trained using the same structures as described in Section 3.1, 

except that the output layer has 6700 nodes corresponding to 

senones derived from a decision tree trained with the GMM-

HMM system. Also, the filter configuration used for the CNN 

is 8 frequency bands by 15 context frames. The recognition 

results are shown in Table 3. 

We found that even with one thousand hour of training 

data, the improvement of the CNN over the DNN is 

remarkably significant (4.51% relative error rate reduction) for 

distance speech recognition. We believe this is the largest data 

set so far to report the effectiveness of CNNs. To our best 

knowledge, in the previous literature, the largest corpus that 

has been used in the study of CNNs for speech recognition is 

400-hour Broadcast News [8].  

While one might suspect that for speech recognition, the 

advantage of a CNN over a DNN due to its better 

generalization to unseen data will soon disappear as long as 

there are large enough amounts of training data for a DNN to 

learn from, distant speech recognition provides an area for 

CNNs to show their robustness to distortion that cannot be 

easily achieved by DNNs. Distant-talking speech has more 

distortion than close-talking speech because the speech signals 

are increasingly degraded by additive noise and room 

reverberation as the distance between the speaker and the 

microphones grows. Even with beamforming and 

dereverberation techniques, there are some errors introduced 

by microphone array processing [21]. Another supporting 

evidence is that the gain of CNNs over DNNs increases as the 

distance between the speaker and microphone arrays increases, 

Table 1. Word error rates of clean trained DNN and 

CNN models on Aurora 4 (Test set A-D) 

 A B C D Avg 

DNN 4.4 23.8 22.8 41.8 30.1 

CNN 4.2 23.3 19.1 40.2 28.9 

CNN-NM 4.6 25.3 22.4 43.3 31.3 

 

Table 2. Word error rates of multi-style trained DNN 

and CNN models on Aurora 4 (Test set A-D) 

 A B C D Avg 

DNN 4.9 9.0 9.3 20.9 13.8 

CNN 5.1 8.8 8.5 20.1 13.4 

 

Table 3. Results of DNN and CNN models on Kinect 

beam-formed data recorded at different distance ( 

1, 2, and 3 meter) 

Distance 1m 2m 3m Avg 

#. Word counts 21629 22989 23099  

WER of DNN 13.79 16.06 16.00 15.31 

WER of CNN 13.38 15.33 15.07 14.62 

WERR(%) 2.97 4.55 5.81 4.51 
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which suggests that the more distorted the signals are, the 

more effective CNNs become. Note that since audio data 

recorded at different distances are different utterances, the 

absolute word error rates across distance are not directly 

comparable.  

4. CNNs for Small-Footprint Models 

In this section, we use a Microsoft internal Windows Phone 

short message dictation task to investigate the most effective 

model structure with small-footprint constraint. The 

transcribed training data has 60 hours of US-English audio. 

The test set is extracted from the live data of the Windows 

Phone task. Again, the input feature to CD-DNN-HMM 

system is a 40-dimension log-filter-bank feature with up to 

second-order derivatives. We augment the feature vectors with 

previous and next 5 frames (5-1-5). The system uses 6k 

senones, determined by the baseline CD-GMM-HMM system. 

 

  

First we investigated the behavior of different neurons 

under different sizing constraints by training DNNs of 5 

hidden layers, with 256, 512, 1024, and 2048 neurons in each 

hidden layer, corresponding to 1M, 2.6M, 7.4M and 23M 

parameter, respectively. The neuron types include sigmoid, 

ReLU, and maxout units. For maxout units, the pooling size of 

2 is used based on our experience. To make the number of 

trainable weights comparable to those from sigmoid and ReLU 

networks, the actual number of maxout units per layer is 180, 

384, 724, 1536, respectively. Figure 3 summarizes the 

performance of different neuron types for different model 

sizes. We can see that maxout units perform best for the 256x5 

and 512x5 structures but start to degrade for the 2048x5 

structure. (KxH notation stands for H hidden layers of K 

neurons.) This indicates that maxout units have the greatest 

tendency to overfit among all neuron types. To avoid over 

fitting by adding dropout, we are able to boost the 

performance of maxout networks to 20.7%, outperforming all 

other units. 

However, the interest of this paper is to find the most 

suitable neural network model under small-size constraint. To 

this end, maxout units appear to be the best option. We further 

suspect that CNNs could be a good structure given limited 

number of parameters. To verify this, we train CNNs using 

sigmoid and maxout units, respectively, for the hidden layers 

above the CNN layer, and compare their performance under 

different model sizes in Figure 4. For both units, CNNs 

consistently outperform DNNs for all model sizes, except for 

the 2048x5 maxout CNN as maxout units are worse than 

sigmoid units if without dropout. Among all model sizes, the 

gain of CNNs is most significant for the 512x5 structure 

(corresponding to 2.6M in Model Size), relative 6.8% WERR 

for sigmoid and 2.6% for maxout units, possibly because the 

smart way of allocating free parameters is more important for 

the case of limited parameter budget. Finally, for the 512x5 

structure which is a common choice for device models 

[14][22], a CNN combined with maxout units achieves the 

lowest WER, yielding relative 9.3% WERR from DNNs with 

sigmoid units. In fact, a 512x5 CNN with maxout model has 

lower WER than a 2048x5 DNN with sigmoid model while 

the model size is 10 times smaller. A recent study has also 

reported the effectiveness of convolutional deep maxout 

networks on the TIMIT phone recognition task [23]. On top of 

this, our study explored its effectiveness for the large 

vocabulary task and established that it is the most effective 

model under small-sizing constraints for the purpose of 

deploying small-footprint models to devices. 

 

 

5. Conclusions and Future Works 

In this paper, we provided several detailed analyses of CNNs’ 

capability and performance. We first showed that a CNN with 

random initialization can automatically learn various sets of 

edge detectors to locally extract low-level features. Our 

extensive experiments suggested that CNNs have an advantage 

over DNNs in the following four domains: channel-

mismatched training-test conditions, noise robustness, distant 

speech recognition, and low-footprint models. One example is 

the 1000-hour Kinect distant speech recognition task, where a 

CNN established 4% relative improvement in WER over a 

DNN of similar size. For low-footprint models, we found the 

excellent learning ability of maxout neurons can be combined 

with a CNN structure to achieve the best performance for a 

small neural network. A CNN combined with maxout units 

yielded relative 9.3% WERR from a DNN with sigmoid units. 

In fact, a 512x5 CNN with maxout model has lower WER than 

a 2048x5 DNN with sigmoid model while the model size is 10 

times smaller. Given the success of our separate work in 

distribution learning for small-size models [22], we are 

currently investigating if using convolutional maxout networks 

with distribution learning can bring further improvements over 

standard DNNs. Another future direction is to investigate the 

effectiveness of CNNs in the Recurrent Neural Network 

(RNN) framework, e.g. Long Short-Term Memory (LSTM) 

RNNs [24], which has emerged recently as a potentially better 

sequential model for acoustic modeling. 

Figure 3. Comparison of sigmoid, ReLU and maxout 

units for DNN under different model sizes: 256x5, 512x5, 

1024x5, 2048x5 (corresponding to 1M, 2.6M, 7.4M and 

23M parameters) 
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