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ABSTRACT

The algorithm of choice for cross-entropy training of deep neu-
ral network (DNN) acoustic models is mini-batch stochastic gradi-
ent descent (SGD). One of the important decisions for this algorithm
is the learning rate strategy (also called stepsize selection). We in-
vestigate several existing schemes and propose a new learning rate
strategy which is inspired by nonmonotone linesearch techniques in
nonlinear optimization and the NewBob algorithm. This strategy
was found to be relatively insensitive to poorly tuned parameters and
resulted in lower word error rates compared to Newbob on two dif-
ferent LVCSR tasks (English broadcast news transcription 50 hours
and Switchboard telephone conversations 300 hours). Further, we
discuss some justifications for the method by briefly linking it to re-
sults in optimization theory.

Index Terms— deep learning, speech recognition, stepsize,
learning rate, nonmonotonicity

1. INTRODUCTION

Deep Neural Networks (DNNs) have become the model of choice
for acoustic modeling in automatic speech recognition systems [1].
The problem of training a DNN translates to that of mathematical
optimization with a non-convex objective function. These problems
are categorically difficult to solve and require efficient starting points
and search directions. For solving such problems, there are two ma-
jor steps in the iterative process: computation of search direction and
decision about learning rate [2]. Depending on the algorithm, the
search directions are either sub-sampled gradients or linear transfor-
mations of sub-sampled gradients through Hessian-Free or Quasi-
Newton schemes. The choice of learning rate, while an important
decision, is often rather arbitrary. Common choices are, either a
fixed value, a pre-determined schedule, or an adaptive scheme based
on curvature or gradient information. The motivation behind the lat-
ter mechanisms is to allow aggressive optimization in the beginning
by allowing larger steps (and hence, a larger learning rate) but cut-
ting back later in the optimization during the “fine-tuning” phase.
Adaptive schemes have been preferred to pre-determined schedules
primarily because of the lack of tuning involved and the fact that
the decrease in steps is driven by the curvature estimates rather than
trial-and-error [3, 4]. The problem of choosing learning rates has
been investigated by the optimization community with many options
available which ensure global convergence under regularity condi-
tions. Examples include Armijo-like and Wolfe linesearch. How-
ever, all of the said choices face two major flaws: they are restric-
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tive in allowing the learning rates to stay higher and they completely
ignore the cross-validation (CV) set during training. Through the
use of adaptive schemes or schedules, the learning rate is gradu-
ally reduced however, this reduction might be too restrictive and the
algorithm may stagnate prematurely. Also, while the goal of the
optimization algorithm is to best fit the training data, it is not en-
tirely in line with the overarching goal of having the best model to
make predictions on unseen data. Indeed, the experiments with line-
search mechanisms popular in the optimization community suggest
that driving the error on the training set to the absolute minimum
does result in an overall worse model in terms of testing error. Thus,
it is necessary to make step acceptance decisions on the basis of how
well the model behaves on unseen data rather than how well it fits
the training data. To do this, it becomes necessary to use the heldout
dataset during the training phase as opposed to only using it once
the model has been trained. We discuss some statistical repercus-
sions of this choice. This strategy of using the CV set during train-
ing is not new and has been proposed earlier under the name New-
Bob [5] and has been redesigned in a recent paper to make it less
restrictive [6]. We propose a nonmonotone variant of this strategy
which brings forth two significant improvements: firstly, it allows
the learning rate to stay larger for a longer period of time thus allow-
ing rapid progress when the stochastic gradients can be trusted and
secondly, the algorithm becomes less sensitive to the choice of the
initial parameters. In summary, the proposed algorithm is more per-
missive and yet, more robust when used as the learning rate strategy
for minibatch stochastic gradient descent.

2. NONMONOTONE LEARNING RATE STRATEGY

In this section, we describe our proposed nonmonotone learning rate
strategy, its motivation and theoretical properties.

2.1. General setting and notation

In order to effectively build connections with the literature in the
field of nonlinear optimization, let us abstract the problem of train-
ing neural networks into that of non-convex optimization. We are
interested in optimizing the function f(x) which is the average of
M loss functions each corresponding to a unique datapoint. Thus,
we are interested in finding the vector x? in the search space IRN

such that

x? = arg min
x
f(x), f(x) =

1

M

M∑
i=0

fi(x)

The standard minibatch SGD used for solving this problem starts
off with an initial estimate of the solution x0 and follows the iterative
scheme:
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xk+1 = xk − ηk∇̂f(xk)

where ∇̂f(x) is the minibatch stochastic gradient computed as
∇̂f(x) = 1

m

∑
i∈I ∇fi(x) with I being an index set of cardinality

m. For the purposes of this study, we use a fixed batch size which at-
tempts to compromise between the reliability of the gradient and the
computational effort. In the following subsections, we briefly sur-
vey the techniques used to determine ηk for effective convergence,
discuss their drawbacks and then propose a new strategy.

2.2. Prior work

In this subsection, we discuss some of the techniques that have been
proposed in literature to determine ηk. This has been a fairly ac-
tive topic of research and the discussion is far from exhaustive. We
classify the various schemes under broad categories and discuss two
competitive strategies in greater detail. Figure 1 aims to classify
some of the popular learning rate strategies on the basis of the fun-
damental idea.

Learning 
Rates 

Constant Schedules 

Exponential 

Power 

Adaptive 
Schemes 

AdaGrad 

AdaDec 

AdaDelta 

Linesearch 
Based 

Armijo 

Wolfe 

CV Based 

NewBob 

Fig. 1. Classification of popular learning rate strategies.

2.2.1. Adaptive schemes

These schemes are based on reducing the stepsizes on the basis of
accumulated gradient information. Examples include [3, 4, 7].These
schemes allow for each weight in the DNN to have its own individ-
ual learning rate. For instance, given any unit i, AdaGrad uses the
stepsize of the form

ηik =
ηi0√∑k−1

j=0 ∇̂2
i f(xj)

where we slightly abuse the notation ∇̂if(xj) to mean the ith com-
ponent of the stochastic gradient computed at iteration j. These
methods are documented to require much less tuning but we lose
control over the decay rate of the stepsizes and adversarial gradient
estimates can lead to steps reducing much faster than necessary. This
fast stepsize reduction was found to be beneficial in the context of
asynchronous SGD such as the DistBelief framework [8].

2.2.2. NewBob scheme

This scheme starts with a relatively high stepsize value and uses the
cross-validation set to make judgments about reducing the stepsizes.
What differentiates this mechanism from others is that is uses the
CV set during training. The specific algorithm used in QuickNet [9]
starts with a reasonably high learning rate and keeps that for sub-
sequent epochs until the error on the CV set decreases by less than
0.5% over the previous epoch. After that, the learning rate is halved
before each epoch to home-in with increasing precision on the local
optimum. Recent work by Wiesler et al. [6] uses a representative
chunk of the training dataset instead of the cross-validation set and
attempts to make this less restrictive by reducing the stepsize for the
current epoch only if there isn’t sufficient improvement over the pre-
vious one.

2.2.3. Linesearch schemes

Although very popular in nonlinear optimization [2], they are not
particularly well suited for DNN training because of expensive func-
tion evaluations and noise in the stochastic gradient estimates. Ar-
guably the most popular strategy of backtracking attempts to find
ηk ∈ {20, 2−1, 2−2, · · · } such that f(xk+1) < f(xk) − ε · ηk ·
‖∇f(xk)‖2. This strategy is ill-suited because the sufficiency re-
quirement cannot be well estimated using noisy gradients and the
repeated backtracking would involve multiple forward passes. Pre-
determined schedules (including constant stepsizes) can be tuned to
perform well but the tuning process can be involved and the same
strategy does not generalize to other datasets.

2.3. Proposed strategy

In this subsection, we describe the proposed learning rate and its
advantages and theoretical properties. We start off by motivating
the idea and discussing its provenance. The problem of finding the
unconstrained minima of a function is quite well-studied in the op-
timization community. As mentioned in the previous sections, the
popular linesearch algorithms used to solve these problems usually
consist of 2 major steps: step computation and step acceptance.
These two steps, in conjunction, lead to globally convergent algo-
rithms. However, because function and gradient evaluation in the
context of DNN training is expensive, the schemes are adapted to
function well in DNN training. An adaptation of the popular back-
tracking idea is that the current step is cut in half and the optimiza-
tion continues irrespective of whether the reduced step is satisfac-
tory. This forms the basis of the diminishing stepsize scheme for
SGD [10]. When the function being evaluated is using the CV set,
it has been known to perform extremely well [6]. However, it has
been known in the optimization community that enforcing mono-
tonicity on function decrease can greatly hamper convergence speeds
in the intermediate stages of optimization and more so when there is
no resetting of the learning rate [11, 12]. Thus, we propose a non-
monotone variant of this scheme where we allow more freedom for
the steps and require functional decrease every J iterations where J
is user-defined. Further, we keep memory of the best known iterate
which is used as part of the algorithm to safeguard against adversar-
ial steps.

2.3.1. Algorithm

In this subsection, we describe the algorithm in detail.
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Algorithm 1 Minibatch SGD with non-monotone step selection

1: Given x0 ∈ IRN , η0, ε > 0 and m,J,H ∈ N
2: xbest = x0 and Φbest = f(x0)
3: t = 0 and Φ0 = f(x0)
4: for k = 0, 1, 2, · · · do
5: Compute ∇̂f(xk) = 1

m

∑
i∈Ik
∇fi(xk)

6: xk+1 = xk − ηk∇̂f(xk)
7: if k mod H = 0 then
8: Φ̂ = max(Φt−1,Φt−2 · · · ,Φt−J)

9: if f(xk+1) > Φ̂− ε · ηk · ‖∇̂f(xk)‖2 then
10: ηk+1 = 0.5 · ηk
11: if f(xk+1) > Φ̂ then
12: xk+1 = xbest
13: end if
14: else
15: ηk+1 = ηk
16: if f(xk+1) ≤ Φbest then
17: xbest = xk+1 and Φbest = f(xk+1)
18: end if
19: end if
20: t = t+ 1
21: Φt = f(xk+1)
22: end if
23: end for

The version of the algorithm described uses an Armijo-like con-
dition on the training dataset for sufficient decrease. However, for
practical implementations, this can be replaced by some other ac-
ceptable sufficiency condition on the cross-validation set such as the
NewBob strategy 1.01 · f(xk+1) > Φ̂ which is what we ended up
using in our experiments.

While this change over the existing framework may appear to
be trivial and incremental, in reality, it has significant repercussions
on the convergence of the algorithm. Firstly, the nonmonotone re-
quirement allows the stepsize to remain high for a longer duration
but is restrictive when sufficient progress is not being made. This
is especially useful when the initial stepsize is underestimated. Fur-
ther, it has been known that nonmonotone strategies are especially
powerful in the intermediate stages of optimization [11]; which in
our case, is an important chunk given that the optimization is never
continued till the gradients drop to 0. The safeguards allow for incre-
mental progress and prevent situations where the objective continues
to get worse for an extended duration of the optimization. The idea
for safeguards is rooted in the validity of the Taylor model around
the iterate. In case of insufficient progress, by reverting back to best
known iterate and cutting back steps, we improve the accuracy in
the Taylor model thus increasing the possibility of making progress.
If the dataset to determine sufficiency is chosen to be the CV set,
similar to the NewBob strategy, the model does return iterates which
have better generalization and testing error.

2.3.2. Theoretical justifications

In this section, we attempt to justify the method theoretically. We
summarize prior work in cyclic gradient methods and nonmonotone
linesearches and their relation with the proposed scheme. Concep-
tually, our method can be thought of as a cyclic perturbed gradient
method with a nonmonotone step acceptance strategy. The literature
in nonmonotone step acceptance is quite rich. It is known that under
regularity conditions, nonmonotone Armijo-like strategies converge
[11, 12]. Further, we know that cyclic versions of these methods i.e.,

when the step is kept constant for a duration of time before being up-
dated, also converge; for instance, see [13] for cyclic nonmonotone
strategy with heuristic initialization. This would indeed be the case
if each gradient in our algorithm was using the entire batch instead
of stochastic. Because of the fact that batch gradient computations
are often expensive and unnecessary; and that backtracking, owing
to function evaluations, can be expensive, the modified algorithm
retains the speed of SGD at the expense of less informative theory.

Further, since we are using mini-batch gradient estimates as op-
posed to batch estimates, the directions that we search along can
be thought of as perturbed gradient directions. This line of thought
of characterizing the Incremental Gradient Algorithm (IGA), an al-
gorithm similar to SGD, as a perturbed gradient has been used to
demonstrate convergence of incremental gradient methods. In [14],
under conditions of strong growth, the author proves convergence of
IGA with a small enough stepsize. The strong growth condition re-
quires boundedness of each stochastic gradient relative to the batch
gradient. Mathematically, we require that there exist a B ∈ IR such
that for all x, maxi{∇if(x)} ≤ B‖∇f(x)‖. Under more bind-
ing assumptions, linear rate of convergence can be proved for such
methods [15]. Recently, it was proved that under the strong growth
assumption, SGD would also be globally convergent for constant
steps small enough and the rate is sublinear [16].

Conditions for global convergence of SGD usually require a
stepsize which decays at a rate which is “not summable but square
summable” [17, 18]. Adaptive schemes like the one we propose
do not fall into this category, making convergence proofs more in-
volved. However, if we start with a stepsize small enough, on the
basis of the aforementioned results, we can expect that the gradi-
ent estimates will be descent directions and we will make sufficient
progress leading to convergence. Further justification can be made
by comparing our algorithm and a similar approach discussed in
[19]. In that paper, the authors prove global convergence of SGD
for nonconvex problems while using a cyclic choice of a heuristic
stepsize. While a complete proof for our algorithm, combining the
ideas discussed above, would be informative; such an analysis would
be quite involved and left as topic of future research.

3. EXPERIMENTAL RESULTS

We ascertain the viability of the proposed method on two speech
recognition datasets: English broadcast news transcription 50 hours
(EBN50) and Switchboard conversational telephone speech 300
hours (SWB300). For both tasks, we compare cross-entropy trained
DNN acoustic models in a hybrid decoding setup using either the
NewBob step selection strategy or the proposed method.

3.1. Frontend processing

Feature extraction is similar for both tasks and consists in extract-
ing 13-dimensional VTL-warped PLP cepstra every 10ms which are
mean and variance normalized for every speaker. Every 9 consec-
utive frames are spliced together and projected to 40 dimensions
using LDA followed by one global semi-tied covariance transform.
The LDA/STC features are further adapted with one feature-space
MLLR transform per speaker and both training and test time. The
input to the DNNs is formed by consecutive FMLLR feature vectors
within a temporal window of ±4 frames for EBN50 and ±5 frames
for SWB300, respectively. For Switchboard, we also add i-vector
based speaker adaptation [20] by appending a 100-dimensional i-
vector to every stack of 11 FMLLR frames resulting in an input di-
mension of 540 (versus 360 for EBN50).
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3.2. Network topology and CE training

The DNNs have 6 hidden layers with sigmoid activation functions
and a softmax output layer whose units correspond to the leaves of
a phonetic decision tree with pentaphone crossword context. For
EBN50, each hidden layer has 1024 units except the last one which
has 512 and the output layer contains 5000 units. For SWB300,
the hidden layers are of size 2048 except the last one which has
256 units and the output layer is comprised of 9300 neurons. The
baseline nets are trained with 20 passes of cross-entropy SGD on
frame-randomized minibatches of size 256 for EBN50 and 250 for
SWB300. All DNNs are initialized with layerwise discriminative
pretraining [21] by running one cross-entropy sweep over the train-
ing data.

3.3. English BN 50 hours results

in Figure 2 we show the phone frame error rates on the held-out
data for various SGD runs using the NewBob strategy (baseline) and
the proposed non-monotone scheme. The experimental settings for
the non-monotone algorithm are as follows. We used a history of 5
previous objective function values (J = 5 from Algorithm 1) and
we compute the cross-entropy loss twice per epoch (i.e. H = K/2
where K is the number of training minibatches). While not reported
here, we have also experimented with varying J from 3 to 7 while
keeping H fixed and observed a similar performance.

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20

P
ho

ne
 E

rr
or

 R
at

e 
(%

)

Epoch

Baseline 1e-3
Non-monotone 1e-3

Baseline 2.5e-3
Non-monotone 2.5e-3

Fig. 2. Phone frame error rates on heldout data for EBN50.

As can be seen, the non-monotone strategy achieves lower phone
error rates at the end of the optimization because it keeps a higher
stepsize longer compared to the baseline whereas the latter is too ag-
gressive in the stepsize reduction. As a consequence, the baseline
algorithm converges prematurely to a suboptimal phone error rate.
This is also reflected in Table 1 where we compare the word error
rates of the two algorithms for different initial stepsizes. The WERs
were computed on the DEV’04f testset using an 84K word vocabu-
lary with 90K pronunciations and a 4-gram LM with 3.3M n-grams.

We observe that the non-monotone strategy outperforms the
baseline NewBob algorithm for all initial stepsizes although the gain
in performance is reduced if the initial stepsize is carefully tuned.

3.4. Switchboard 300 hours results

Similar to the EBN50 setup, in Table 2 we compare the word error
rates obtained for the SGD runs with different initial stepsizes. The

Initial stepsize Baseline Non-monotone
1.0e-3 18.2 17.6
2.5e-3 17.7 17.1
5.0e-3 17.0 16.7
1.0e-2 17.4 16.9

Table 1. Word error rates on the DEV’04f testset for EBN50.

WERs were computed on the Hub5’00 testset using a 30.5K word
vocabulary with 32.8K pronunciations and a 4-gram LM with 4M
n-grams. Here, the results are mixed: while our method improves
for a poor initial stepsize selection, it does not result in gains over
NewBob if the initial learning rate is adequate.

Initial stepsize Baseline Non-monotone
1.0e-3 13.5 13.1
2.5e-3 13.2 13.2
5.0e-3 13.2 13.3
1.0e-2 13.5 13.3

Table 2. Word error rates on the Hub5’00 testset for SWB300.

4. DISCUSSION

In this paper, we proposed a new learning rate strategy which builds
on the ideas of nonmonotone search and using a cross-validation set
during training. We justified the algorithm theoretically and demon-
strated good performance on two speech recognition tasks. Non-
monotone search is popular in nonlinear optimization for use when
the method is expected to do well in general but cannot make suf-
ficient progress on each iteration. This is precisely the situation in
DNN training; the minibatch gradients and an appropriately chosen
constant stepsize are expected to do well in general, but sufficient
progress after each epoch cannot be guaranteed. By using a few
more function evaluations, we allow for a more rapid decrease in ob-
jective while retaining the robustness of other competitive methods.
Further, by reverting back to the best known iterate in case of insuf-
ficient progress, we allow for a more controlled decrease by prevent-
ing the objective functions from increasing for an extended duration.
The idea of nonmonotonicity does not depend on the dataset being
used for determining sufficiency; by using the cross-validation set
however, we are able to achieve better generalization. It is known
that using solely the training error is suboptimal because the model
adapts to the idiosyncrasies of the training dataset leading to op-
timistic biases and inferior generalization. Cross-validation allows
for better model selection by corroborating the viability of the model
against a new dataset giving an estimate for the generalization error.
However, a subtle point about cross-validation is that the purpose
of the dataset is to estimate the generalization of the method used
to generate the model as opposed to the model itself. Thus, using
the cross-validation set during training might lead to optimistic gen-
eralization errors [22]. Yet, this procedure simplifies the process
to improve generalization and leads to better training outcomes in
our experiments. While the learning rate strategy is described in
the context of minibatch SGD, the proposed method applies more
generally. Preliminary experiments with stochastic quasi-Newton
methods suggest potential improvements over other strategies. A
detailed study of these improvements and a more complete conver-
gence proof forms the basis of future work in this domain.
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