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ABSTRACT

This paper proposes a method to train Weighted Finite State Trans-
ducer (WFST) based structural classifiers using deep neural network
(DNN) acoustic features and recurrent neural network (RNN) lan-
guage features for speech recognition. Structural classification is an
effective approach to achieve highly accurate recognition of struc-
tured data in which the classifier is optimized to maximize the dis-
criminative performance using different kinds of features. A WFST-
based classifier, which can integrate acoustic, pronunciation, and
language features embedded in a composed WFST, was recently
extended to incorporate DNN bottleneck (DNNBN) features. In
this paper, we further investigate the integration of a RNN language
model (RNNLM) with the WFST classifier. To this end, we intro-
duce a lattice rescoring method using a RNNLM for efficient clas-
sifier training. In a lecture transcription task, we reduced the word
error rate from 19.2% to 18.6% by optimizing the WFST parameters
for the DNNBN acoustic and RNNLM language features.

Index Terms— Structural classification, WFST-DNN, RNNLM,
Lattice rescoring, Speech recognition

1. INTRODUCTION

Structural classification [1] is an effective approach to achieve highly
accurate recognition of structured data in which the classifier is op-
timized to maximize the discriminative performance using different
kinds of features. For instance, conditional random fields (CRFs)
with latent variables, called hidden CRFs, were applied to phone
recognition as a structural classification problem [2, 3]. A segmental
CRF framework was proposed that can integrate several multi-scale
detector streams as input features for speech recognition [4].

The WFST-based classifier [5, 6, 7] for speech recognition,
which is one of the most successful examples of structural classifi-
cation, can integrate acoustic, pronunciation, and language features
embedded in a composed WFST to provide accurate speech recog-
nition. It was recently extended to incorporate DNN bottleneck
(DNNBN) acoustic features [8, 9]. The extended classifier, called
WFST-DNN, yields a successful way to integrate WFST-based
speech recognition and DNN feature extraction into a unified frame-
work. It inherits the advantages of a DNN-based feature extractor
[10] and the rich representation of WFST that describes in a unique
graph all the linguistic information, such as a language model, a
lexicon and the phoneme context dependence. Its advantage is that
it can model the interdependence of acoustic and linguistic aspects
and optimize the parameters based on a single objective function.

Its performance has been evaluated, and it outperformed standard
speech recognition based on GMM-HMM or DNN-HMM [8].

Recently, several investigations of continuous space language
models [11, 12, 13, 14] have shown that they handle the data spar-
sity problem better than n-gram language models. Among various
types of continuous space language models, the recurrent neural net-
work language model (RNNLM) is an effective method that signif-
icantly improves language modeling and speech recognition. Previ-
ous studies [13, 14] showed that the accuracy of speech recognition
was significantly improved, especially when the RNNLM was inter-
polated with a standard n-gram model. An advantage of RNNLM
is that it can capture long context patterns of entire utterances rather
than just n − 1 previous words in the n-gram models. On the other
hand, RNNLM increases the computational complexity in decoding
because of its long history dependency. However, efficient lattice
rescoring [15] and one-pass decoding [16, 17] have been proposed
recently.

In this paper, we integrate RNNLM into structural classification
approaches instead of the standard n-gram language models that are
conventionally used. Looking at the effectiveness of RNNLM, we
expect that further WER reduction can be obtained by introducing
it into the structural classification approach. For example, it is pos-
sible to simply combine RNNLM with an already trained WFST-
DNN in the decoding phase. However, the parameters of WFST-
DNN have been optimized for the n-gram language model but not
for RNNLM. In this paper, we present a method that optimizes a
WFST-DNN structured classifier with RNNLM. Our approach inte-
grates the RNNLM probabilities into the training lattices and per-
forms discriminative training to optimize the WFST-DNN parame-
ters. To this end, we introduce an effective lattice rescoring method
that serves as an important step of the optimization process.

2. WFST-DNN CLASSIFIER FOR SPEECH RECOGNITION

A WFST-DNN classifier [9, 8] is a unified framework that combines
a WFST-based classifier and a DNN-based feature extractor.

In decoding with a WFST-DNN classifier, the target is to find the
most plausible word sequence ˆ̀ given an input sequence of speech
features X = {x1, x2, . . . } by searching for the most plausible
arc sequence â = {â1, â2, . . . }. The output word sequence is ex-
tracted by concatenating the output symbols of the arc sequence in
the WFST as:

ˆ̀= O[â], (1)

â = argmax
a∈D

P (a|X), (2)
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where O[â] denotes the output symbol sequence corresponding to
arc sequence â. D is a decoding graph, which is the composition of
C WFSTs, i.e., D = D1 ◦ D2 ◦ . . .DC . Hence, each arc an in D
can be represented as a tuple of arcs as an ≡ (a

(1)
n , a

(2)
n , . . . , a

(C)
n ).

The posterior probability of arc sequence P (a|X) is defined as

(3)P (a|X) ∝ exp

{∑
n

−ω(an;X)

}
.

In this equation, arc cost ω(an;X) can be expressed as follows:

(4)ω(an;X) = g(a(1)n ;X) +

C∑
c=2

rcW [a(c)n ],

whereW [a
(c)
n ] is the transition weight corresponding to arc a(c)n , and

rc is a scaling factor for the c-th WFST. Transition weight function
g(a

(1)
n ;X) is defined by

(5)g(a(1)n ;X) = γ
a
(1)
n

+

T ′[a(1)n ]∑
τ=T [a

(1)
n ]

((α
a
(1)
n

)ᵀh(L)(xτ ) + β
a
(1)
n

),

where xτ is the τ -th feature vector in input feature sequence X,
T [a] and T ′[a] indicate the beginning and ending time frames for
arc a, respectively. h(L)(xτ ) is the activation vector of the last hid-
den layer of the DNN. α

a
(1)
n

, β
a
(1)
n

, and γ
a
(1)
n

are the parameters of
WFST-DNN to be optimized, where α

a
(1)
n

is the weight vector cor-

responding to arc a(1)n in the weight matrix between the last hidden
layer and the output layer of the DNN. β

a
(1)
n

is the bias parameter

of the output layer. γ
a
(1)
n

is the transition weight of arc a(1)n , which

is equivalent to r1W [a
(1)
n ] but is also jointly optimized. The unified

WFST-DNN framework is illustrated in Fig. 1.
The advantage of WFST-DNN is that it can model both acous-

tic and language aspects in a unified form. Hence, joint sequence
training of the acoustic and language models can be achieved by dis-
criminative training [9]. Note that, in large vocabulary tasks, it is
difficult to use a single WFST composed up to the n-gram language
model, because the size of the WFST increases and an enormous
number of parameters have to be estimated. Practically, we employ
a composition of models up to the unigram language model as the
first WFST, and the n-gram language model as the second WFST in
Eq. (4). In this case, we can assume that parameter tying is enforced
for the features beyond the word unigram. Even with this parameter
tying, the WFST-DNN yielded significant improvements in recogni-
tion accuracy [9].

In the latest setting of WFST-DNN training, the model param-
eters have been optimized with the n-gram language model. Since
RNNLM has been shown to be an effective way for language model-
ing, it is promising to optimize the model parameters with RNNLM.

3. RECURRENT NEURAL NETWORK LANGUAGE
MODELS

In this work, we adopt a class-based RNNLM [13], whose topology
is shown in Fig. 2 with three layers: input, hidden, and output layers.
The input vector for the i-th word is a combination of the word vector
in the 1-of-N coding and the previous hidden layer activation:

(6)xi = [wᵀ
i−1, s

ᵀ
i−1]ᵀ.

Fig. 1. Unified WFST-DNN classifier

Fig. 2. A class-based RNNLM

The advantage of class-based RNNLMs is that they reduce the
computation cost. Each word in the output layer is assigned to a
unique class based on the frequency counts in the training data. The
probability of wi, which is the ith word in class ci, is calculated as

(7)P (wi|xi) = P (wi|ci, si)P (ci|si).

The RNNLM is converted to the WFST form on-the-fly by a previ-
ously proposed method in [17]. In this paper, the transition weights
in the RNNLM-WFST are computed as the interpolation of the
RNNLM and n-gram model as

(8)Pcomb(w|p) = λPrnn(w|p) + (1− λ)Pngram(w|φ(p)),

where λ is the interpolation factor and φ(p) represents the n-1 word
history for state p in the WFST.

4. OPTIMIZATION OF WFST-DNN WITH RNNLM
PROBABILITIES

In this section, we describe the process that optimizes the set of
model parameters, Λ = {ακ, βκ, γκ|κ = 1, . . . , A} with RNNLM
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probabilities, where A is the number of arcs in the WFST. The train-
ing process is an extension of a previous work [8] that uses minimum
transition error training methods [18].

The objective function to be maximized is defined based on the
boosted MMI criterion [19]:

F bMMI
σ (Λ) =

∑
j

log
exp{−Ω(Xj ,aj)}∑

a′∈Lj
exp{−Ω(Xj ,a′) + σE(aj ,a′)}

,

(9)

where Xj is the j-th utterance in the training corpus, and aj and
Lj are the reference and recognition lattices for Xj , respectively.
E(a,a′) is the transition error count function, and σ is a boosting
parameter. Ω(X,a′) is the total cost defined as

(10)Ω(X,a) =
∑
n

−ω(an;X).

In the standard WFST-DNN training for large vocabulary tasks, tran-
sition weight W [a

(c)
n ], which is used to compute the cost function

in Eq. (4), is given by an n-gram language model. To optimize
the WFST-DNN parameters with RNNLM, we need to apply the
RNNLM probabilities of Eq. (8) to the transition weight by rescor-
ing the training lattices, aj and Lj . However, the RNNLM requires
the entire history from the beginning of the utterances to calculate
the probability for a given word. Hence, the rescored lattices grow
exponentially with the length of the utterances. Therefore, efficient
lattice rescoring is needed to generate appropriate RNNLM rescored
lattices for training1. In the next section, we describe lattice rescor-
ing with RNNLM that generates rescored lattices with small size
while keeping better paths in the lattices.

5. EFFICIENT LATTICE RESCORING

As described in the previous section, RNNLM rescored lattices are
required to train WFST-DNN. In this section, we describe the lattice
rescoring method. The application of this method is limited not only
to generate lattices for WFST-DNN training but also for standard
2-pass decoding in speech recognition.

The strong generalization of RNNLM is derived from a full con-
text history that is represented by a continuous history vector. For
this reason, the number of RNNLM contexts grows exponentially as
the hypotheses become longer. A solution is to develop a history
clustering context to allow multiple states to share the same history.
A history vector-based clustering method was proposed [15] that
generates reasonably well rescored lattices. However, the previous
work used approximated RNNLMs, where histories are clustered in
advance. Since such approximation decreases the recognition ac-
curacy, it cannot be used to train WFST-DNN where we use exact
(non-approximated) RNNLM.

To address the above problem, we propose a history vector clus-
tering method that takes the accumulated weight into account. The
idea is to give priority to all the states based on their accumulated
weight from the initial state, where a state with a smaller accumu-
lated weight is assumed to be better, i.e., it has higher priority. The
states are then expanded based on their priority. Figure 3 illustrates
the expansion process. The expanded state candidates 2’, 2”, and 2”’
are derived from the same state 2 in the original lattice. If the state 2’
has the smallest accumulated weight, it is expanded first. When the
state clustering is performed, the state with the larger accumulated

1In our approach, the RNNLM itself is not optimized but the transi-
tion weight functions are optimized based on the entire scores including the
RNNLM probabilities.

Fig. 3. Expansion based on accumulate priority. State 2’ is expanded
first because it has the smallest accumulated weight among other
state candidates.

weight will be merged into the smaller one. This process ensures
that good paths remain in the rescored lattices.

We denoteW(s) is the accumulated weight from the initial state
to state s in a lattice being generated by RNNLM rescoring, which
is calculated as

W(s) =W(s′) +W [as′,s], (11)

where s′ is a preceding state of s and as′,s is an arc leaving s′ to s.
W [as′s] is the transition weight of the arc.

The history vector of state s is given as a hidden activation vector
in the RNNLM, which is computed with the word sequence on the
best path to state s. The history distance of given two states, s1 and
s2, is calculated by the Euclidean distance:

D(s1, s2) =

√√√√ K∑
k=1

(h
(k)
s1 − h

(k)
s2 )2, (12)

where h(k)
s denotes the k-th element of the K-dimensional history

vector of state s. States that have a history distance smaller than a
threshold from each other will be merged. Note that when similar
states are merged, the arcs connected to one of the similar states are
reconnected to the merged state. To control the size of the rescored
lattices, we also introduce state beam width m, which is the maxi-
mum number of states derived from each original state. When the
number of states reaches the m value, the remaining states with
lower priority are merged to the closest state based on the history
distance. With this rescoring strategy, we can reduce the size of lat-
tices while keeping better paths.

6. RELATION TO PRIOR WORK

There have been attempts to introduce additional features in struc-
tural classification approaches for speech recognition. Segment-
based features such as the duration information of phonemes were
introduced [20]. Example-based features based on the DTW dis-
tance from the k-nearest neighbor speech examples were also in-
vestigated [21]. However, no prior work has considered RNNLM
probabilities as presented in this paper.

In addition, we created a lattice rescoring algorithm, which can
assign correct RNNLM probabilities to multiple hypotheses with
relatively high scores in a lattice, to compute the objective func-
tion more correctly. A lattice rescoring method was proposed but it
makes several approximations that may affect the performance [15].
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Since our speech recognizer can perform one-pass decoding using
a RNNLM without approximation [17], we needed another lattice
rescoring method for a non-approximated RNNLM.

On the other hand, sequence training methods have recently
been applied to DNN acoustic models [22, 23, 24]. Those meth-
ods employ MMI or minimum Bayes risk objective function. The
WFST-DNN is also optimized by sequence training, but the transi-
tion weight functions of acoustic, pronunciation and language model
features are optimized. Although only the parameters in the output
layer of the DNN get updated in this training step, sufficient error
reduction can be obtained as reported in [24].

7. EXPERIMENTS

In our experiments, we evaluated the RNNLM lattice rescoring
method and the WFST-DNN optimized with the rescored lattices.
We conducted experiments using the MIT lecture corpus [25] with
101 hours in the training set, 54 minutes in the development set
and 7.8 hours in the evaluation set. As input feature vectors of
a DNN, we extracted 12 Mel-frequency cepstral coefficients and
a log-energy feature augmented by their first- and second-order
derivatives, and then the 38 dimensional features excluding the
static log-energy were further augmented by concatenating the fea-
ture vectors of the 5 preceding and 5 subsequent frames. For the
baseline DNN-HMM system, a DNN was set up with 7 layers, in
which 418 units for the input layer, 2048 units for each hidden layer,
and 512 units for the bottleneck layer were prepared. The output
layer consisted of 2,565 units, which equals the number of HMM
states. The DNN parameters were trained using a cross-entropy cri-
terion. In the WFST-DNN system, we used two WFSTs, where D1

was composed of the HMM state, the triphone context dependency
and the lexicon WFSTs, andD2 was generated from either a trigram
language model with Kneser-Ney smoothing or a RNNLM linearly
combined with the trigram model. The two WFSTs were combined
on-the-fly during decoding [16]. The vocabulary size of the lexicon
and the language models was 44,485. We employed a class-based
RNNLM with 300 hidden units and 250 word classes trained with
a sentence-independent condition. The input and hidden layers of
the WFST-DNN were the same as the DNN-HMM system, but the
output layer consisted of 108,485 units, which equals the number of
arcs in the WFST D1. All the WFST-DNN parameters were trained
with bMMI or MPE criterion.

7.1. Evaluation of RNNLM lattice rescoring

We first evaluated the RNNLM lattice rescoring method. Word error
rate (WER) for the best path in each lattice and its lattice density
were obtained for the development set. The lattice density was com-
puted as the ratio of the number of arcs in the recognition lattices to
that in the reference lattices. The results are shown in Table 1.

The original lattices were generated using the DNN-HMM
acoustic model and the trigram language model, for which we ob-
tained 28.2% WER and 259.7 lattice density. The original lattices
were then rescored with the RNNLM. We also tested one-pass de-
coding with the RNNLM using the method in [17], and obtained
26.9% WER. In [17], this method achieved a better accuracy than
that by 1000-best rescoring. Accordingly, the WER is considered as
almost the lower limit obtained by the RNNLM.

In lattice rescoring, we changed two parameters: distance
threshold t and state beam width m. Looking at the results, they
are promising since our rescoring method can produce exactly the
same WER with one-pass decoding, even though the lattice density
is slightly higher than the original lattices in many cases. Thus, our
proposed lattice rescoring method hopefully assign correct accumu-

Table 1. RNNLM rescoring performance
System WER Lattice density
Original lattices 28.2 259.7
one-pass [17] 26.9 -
t=2, m=∞ 26.9 276.3
t=1.5, m=∞ 26.9 303.7
t=1.3, m=∞ 26.9 332.2
t=1, m=∞ 26.9 456.9
t=0, m=1 26.9 259.7
t=0, m=5 26.9 1189.9
t=1, m=5 26.9 379.7
t=2, m=5 26.9 275.7

Table 2. Word error rate for MIT lecture transcription
System Dev. Eval.
DNN-HMM w/ 3-gram 28.3 22.4
DNN-HMM w/ RNNLM 26.9 20.2
WFST-DNN w/ 3-gram 26.3 20.6
WFST-DNN w/ RNNLM 24.9 19.2
Optimized (proposed) 24.6 18.6
WFST-DNN w/ 3-gram (MPE) 26.3 20.7
WFST-DNN w/ RNNLM (MPE) 25.0 19.3
Optimized (proposed) (MPE) 24.5 18.8

lated weights to better hypotheses in each lattice, and therefore can
be used for WFST-DNN training.

7.2. Evaluation of WFST-DNN optimized with RNNLM

WFST-DNN is optimized with RNNLM by discriminative training
with the RNNLM rescored lattices. We chose t = 1 and m = 5
for rescoring training lattices. Table 2 shows the word error rate in
speech recognition using the standard DNN-HMM system or WFST-
DNN classifier, in which the trigram LM and/or the RNNLM was
used in one-pass decoding. Compared to the DNN-HMM base-
line, the RNNLM and WFST-DNN reduced the WER from 22.4% to
20.2% and 20.6%, respectively. The simple combination of WFST-
DNN and RNNLM also reduced the WER to 19.2%. Finally, the
proposed approach that optimized the WFST-DNN using RNNLM
rescored lattices achieved 18.6%, which is significant error reduc-
tion from 19.2%. In addition, we tested the optimization step with
the MPE criterion based on differenced MMI (dMMI) [26]. We also
observed substantial improvements, as in the case of bMMI.

8. CONCLUSION

In this paper, we described a method that integrates WFST-based
structured classifiers with a DNN acoustic model and a RNN lan-
guage model. We also described an effective RNNLM rescoring
method that produces appropriate rescored lattices for WFST-DNN
training. The WFST-DNN that was optimized with RNNLM prob-
abilities yields a better performance than the standard WFST-DNN
optimized only for trigram probabilities [8]. Future work will in-
clude joint training of WFST-DNN and RNNLM parameters.
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