
NEURON SPARSENESS VERSUS CONNECTION SPARSENESS IN DEEP NEURAL
NETWORK FOR LARGE VOCABULARY SPEECH RECOGNITION

Jian Kang, Cheng Lu, Meng Cai, Wei-Qiang Zhang and Jia Liu

Tsinghua National Laboratory for Information Science and Technology
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

Email: kangj13@mails.tsinghua.edu.cn, lucheng1983@163.com, cai-m10@mails.tsinghua.edu.cn,
wqzhang@tsinghua.edu.cn, liuj@tsinghua.edu.cn

ABSTRACT
Exploiting sparseness in deep neural networks is an important
method for reducing the computational cost. In this paper,
we study neuron sparseness in deep neural networks for
acoustic modeling. For the feed-forward stage, we only
activate neurons whose input values are larger than a given
threshold, and set the outputs of inactive nodes to zero.
Thus, only a few nonzero outputs are fed to the next layer.
Using this method, the output vector of each hidden layer
becomes very sparse, so that the computational cost of the
feed-forward algorithm can be reduced by adopting sparse
matrix operations. The proposed method is evaluated in
both small and large vocabulary speech recognition tasks, and
results demonstrate that we can reduce the nonzero outputs to
fewer than 20% of the total number of hidden nodes, without
sacrificing speech recognition performance.

Index Terms— speech recognition, deep neural network,
sparseness, acoustic modeling

1. INTRODUCTION

Deep neural networks (DNNs) are a very promising technique
for acoustic modeling [1, 2, 3]. Substantial reduction of
error rate has been achieved for large vocabulary speech
recognition tasks. Hybrid systems that combine deep neural
networks with hidden Markov models (HMM) have become
one of the dominant acoustic modeling approaches, and have
already achieved great success.

To obtain state-of-the-art performance, a large deep neural
network model is trained, which generally has 5-7 hidden
layers with 1024-2048 nodes in each layer. However, the
computational cost for such a large model is a crucial issue
in real applications. The main computational cost for this
model is matrix multiplication in the feed-forward algorithm.
Generally, graphical processing units (GPUs) are used for
improving computation speed, especially during the training
procedure.

This work is supported by National Natural Science Foundation of China
under Grant No. 61370034, No. 61273268 and No. 61403224

In addition to hardware based acceleration, algorithmic
techniques have been proposed for improving the computa-
tion efficiency. Some such methods are based on exploiting
the sparseness of the weighted connections. For example, in
[4], Yu et. al. exploit connection sparseness by enforcing
some weights to be zero, and keep only a few nonzero
weights, which leads to a model with sparse connections.
Another type of sparsity for the weighted connections is the
rank sparsity [5, 6], i.e., for an m × n weight matrix W ,
the connections between two layers can be approximated by a
low rank matrix. Based on singular value decompositions,
we can compute two matrices U and V with sizes m × r
and r × n, such that W ≈ UV , and r is much smaller than
m and n. Then, a new linear layer with r nodes is added
between the two hidden layers, with connection weights U
and V respectively, so that the total number of connections is
reduced to (m+n)×r, which is generally smaller than m×n
for small r.

A neural network model is defined by its neurons and
the connections between these neurons. The above two
methods have studied two types of sparsity in weighted
connections. In comparison, we will study whether there
exists sparseness of the neurons themselves during the feed-
forward procedure. For neurons with sigmoid activations, the
outputs are distributed between 0 and 1. Empirically, we show
that a high percent of neurons in the hidden layers have very
small output values, so that ignoring these nodes during feed-
forwarding stage does not cause much degradation. Based on
this idea, we can then exploit the neuron sparseness during
the feed-forward procedure for improved computation. The
main advantage of exploiting neuron sparsity is that we can
construct a sparse output for matrix multiplication during the
feed-forward stage, so that the computational cost can be
reduced.

In this paper, we test the idea of exploiting sparseness in
neurons with both a small scaled TIMIT phoneme recognition
task and a large vocabulary continuous speech recognition
(LVCSR) switchboard task. In addition, we also test whether
the connection sparseness method [4] can be integrated with

4954978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015

the proposed neuron sparseness based method.
The remaining parts of this paper are organized as fol-

lows: In Section 2, we briefly review the CD-DNN-HMM. In
Section 3, we consider neuron sparseness in deep neural net-
work and analyze its properties. We report our experimental
results in detail in Section 4 , with conclusions in Section 5.

2. DNN IN ASR

In this section, we give a brief introduction to the CD-DNN-
HMM system. In the CD-DNN-HMM hybrid approach, a
deep neural network model with several hidden layers and
a softmax output layer is constructed for acoustic modeling.
The output of the softmax layer provides an estimation of the
posterior probabilities p(s|o) for states s, with given features
o. The DNN modeling ability is generally much stronger than
conventional GMM based acoustic models.

For hidden layers, we generally select the sigmoid func-
tion as the nonlinearity function. Denote hl as the output
vector of layer l, where l = 1, 2, ..., L, and L is the number of
hidden layers. Let h0 be the input feature vector for the first
layer. Then, we have

hl = σ(WT
l hl−1 + bl)

for l = 1, 2, ..., L, where Wl is the connection weight
between layers l − 1 and l, bl is the bias for layer l, and σ
is the sigmoid function. The output in the softmax layer is
computed by

P (s|o) = softmax(WT
s hL + bs),

where (Ws, bs) is the connection weight matrix and bias
vector for the softmax layer.

The input feature vector h0 is generally constructed by
concatenating several consecutive frames of features, and the
features for each frame are generally the filterbank features,
or MFCC/PLP features.

3. SPARSENESS

In practice, the DNN acoustic model usually has a high
number of layers, for instance 6 layers for SWB and 4 layers
for TIMIT, and 1024 or 2048 neurons per layer. For such a
large model, the computation cost during decoding is a crucial
problem.

One method for reducing the cost is to build a smaller
neural network model. For example, we may train a network
with less neurons in each layer, or with less layers. However,
to achieve the best performance, thousands of neurons for
each layer (at least for the first several hidden layers) are
necessary.

As we have mentioned in Section 1, the weight matrices
for connections have great sparsity. By exploiting these
sparsity properties properly, the computational cost can be

reduced greatly, while retaining almost the same accuracy (or
even improving accuracy for some cases).

However, for DNN models with sigmoid activation func-
tions in speech recognition, previous work has generally
considered the sparsity of the weighted connections, whereas
little work has been done for considering the sparseness
of neurons themselves. For certain functions, such as a
rectifying nonlinear activation [7, 8, 12], the outputs are
sparse, with only a few nonzero outputs. In comparison, the
output of a sigmoid activation is always nonzero. We consider
how to exploit the neuron-level sparseness of DNN models
with sigmoid activation functions.

This idea is similar to human brain activity, in that, when
certain types of information are received, very few neurons
are activated for processing [9], with most neurons inactive
(only 1% − 4% are activated, as pointed out in [10]). In our
proposed deep neural network model, we will simulate this
behavior, i.e., for a given feature input, we only activate a
certain percent of neurons for each layer, and keeps all other
neurons inactive.

This can also be interpreted from a machine learning view
point. A deep neural network is a feature processing model,
such that the outputs of each layer are a type of abstracted
features to represent the original raw features (FBank, MFCC,
PLP and so on). As pointed out by Bengio [11], a robust
feature representation should satisfy sparsity properties, i.e.,
information concentrated in a few features. Sparseness not
only improves the computation efficiency in certain type of
applications, but also provides better robustness for general-
ization.

Based on this intuitive concept, we consider how to
exploit neuron level sparseness. For a network with sigmoid
functions, the output of a neuron is generally distributed
between 0 and 1, which can be regarded as a probability for
activating the neuron. Hence, we can use this to only activate
a set percentage of neurons with outputs larger than a given
threshold, setting other outputs to zero.

To show the feasibility of the above idea in real applica-
tions, we plot the distributions of the output values in each
layer in Figure 1.

As the figure shows, the percentage of nodes with output
larger than 0.2 is quite small, especially for higher layers.
For example, more than 80% of neurons have outputs smaller
than 0.05 for the 6-th hidden layer, with only a very small
percent of neurons activated if the threshold is set to 0.2.
Hence, ignoring the outputs with small values is feasible in
real applications.

Besides, we also compute the energy percentage of neu-
rons whose outputs are less than a given threshold tr, as
shown in Table 1. Here energy means the RMS of sum of
squared neurons.

Based on the above analysis, we see that it is possible in
practice to exploit the sparseness of neurons. We define the
activation function as y = Tr(σ(x)) for exploiting the neuron

4955

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

The value of neuron

T
he

 p
er

ce
nt

ag
e

of
 n

eu
ro

n

1 layer
2 layer
3 layer
4 layer
5 layer
6 layer

Fig. 1. The distribution of output values in each layer.

Table 1. the number and energy percentage of neurons whose
outputs are less than a given threshold tr. ’Node’ represents
the percent of neurons and ’Energy’ represents the associated
energy percentage.

Layer tr = 0.1 tr = 0.2
Node Energy Node Energy

1 71.6% 2.9% 73.9% 5.76%
2 86.2% 4.85% 88.4% 9.49%
3 87.7% 8.55% 91.0% 16.0%
4 86.7% 10.97% 91.0% 20.36%
5 87.3% 11.75% 91.6% 21.81%
6 89.5% 10.79% 92.8% 19.65%

sparseness, where Tr(·) , 0 < tr < 1 is a threshold function
such that Tr(x) = x for x > tr, and Tr(x) = 0 otherwise.

For implementing back propagation, we need to consider
the derivation of the activation function. For x > tr, we have
dTr(σ(x))

dx = σ′(x), and for x < tr, we have dTr(σ(x))
dx = 0.

To implement, we can simply define dTr(σ(x))
dx = 0 for all

x < tr. With this formulation, the back propagation process
can be implemented in a conventional way.

4. EXPERIMENTAL RESULTS

4.1. Experiment setup

In order to evaluate the new sparseness algorithm, we do
experiments on both the TIMIT and SWB datasets.

On the TIMIT dataset [13], we used the 462 speaker
independent training set as the training set , with 50 additional
training speakers as the development set. We use the 24-
speaker core test set to show our results.

We choose MFCC as the input features in our model. The

number of target class labels is 183, i.e. 3 states for each
one of the 61 phones in the phoneme set. When decoding,
these 61 classes are clustered into the standard 39 classes
for scoring. All experiments use a phone-level bigram as the
language models.

The SWB dataset used in our experiments contains the
standard 309 hours training set and the NIST 2000 Hub5
and RT03S evaluation set. Our network uses 13-dim MFCC
features with zero means and unit variance as well as two
order delta and delta-delta coefficients derivatives. LDA,
MLLT and SAT are implemented on the features, reducing
the dimension of the features to 40. Final, eleven frames
are concatenated to generate the new features. The number
of triphones states is 8850, aligned by the optimized GMM-
HMM system.

4.2. Experiment result and Discussion

The DNN used in the TIMIT dataset has 4 layers of 1024
hidden units per layer. The SWB DNN has 6 layers of
2048 hidden units per layer, as in [4]. The batch size
of the two DNNs are 128 and 256 for TIMIT and SWB
respectively. The parameters are randomly initialized with
a normalized uniform distribution and the DNN is pre-trained
using the DBN method mentioned in [14], then fine-tuned
by traditional BP algorithm. The learning rates are 0.008
initially, empirically tuned on the development set. At the
end of every epoch, the learning rate is reduced by a factor
of 2 if the frame accuracy on the development set drops. The
learning rate of the training and re-training is 10−5 for both
datasets.

Results are shown in Table 2 for the experiments on
TIMIT, and in Table 3 for SWB. From the results, we can
see that when exploiting this sparseness, the time complexity
declines significantly, demonstrating that our new sparseness
approach has substantial impact on time cost. Another
positive result is that the WER does not increase, even
showing some improvement (0.2% absolute error reduction
for SWB and 0.15 % for TIMIT) without re-training. Indeed,
this can decrease time computation further compared to
the traditional feed-forward algorithm and the connection
sparseness methods. Furthermore, we find that if the last
hidden layer is not sparse, i.e. the threshold tr in the last
hidden layer is zero, results improving even further. Because
the DNN can shrink in size across layers [15], this doesn’t
influence the sparseness ratio.

Next, we will show the performance of combining the
two sparseness methods. Table 4 compares results with
and without combining connection and neuron sparseness
method. From the results, we can see that when using the
connection sparseness in a high ratio, the WER will decline
sharply without re-training, but recovers after re-training.
Comparing the two results, we can conclude that by using
connection sparseness, the model size will diminish, but if the

4956

sparseness ratio becomes larger, the accuracy rate will decline
a lot so re-training has to be done.

Table 2. Result of using sparseness in the activation function
on the TIMIT dataset. The model has 4 hidden layers and
1024 hidden units per layer. The sparse ratio is calculated
by using all 4 layers. The symbol ’*’ and ’()’ mean that the
results are achieved with and without retraining, respectively.

Sparse
Ratio

Threshold
(Begin∼End Layer)

Calc
Time WER

100% 0(1∼4) 100% 22.86
63% 0.1(1∼3) 85% 22.69
51% 0.1(2∼4) 69% 22.59* (22.77)
40% 0.1(1∼4) 58% 22.44* (23.01)
33% 0.2(1∼3) 51% 23.24
20% 0.2(1∼4) 31% 23.75

Table 3. Result of using sparseness in the activation function
on the SWB dataset. The model has 6 hidden layers and 2048
hidden units per layer. The sparse ratio is calculated by using
all 6 layers.

Sparse
Ratio

Threshold
(Begin∼End Layer)

Calc
Time WER

100% 0(1∼6) 100% 15.9
41% 0.1(2∼5) 97% 15.7
30% 0.1(1∼5) 74% 15.7
27% 0.2(1∼5) 69% 16.0
15% 0.1(1∼6) 41% 16.2
12% 0.2(1∼6) 34% 16.6

To utilize the advantages of both types of sparseness for
improving the computation efficiency, we design a special
data structure for matrix-vector multiplication. For a sparse
n-dimensional vector h with x% nonzero entries, and an
n×m matrix W = (w1, ..., wn)

T with y% nonzero weights,
we have WTh =

∑n
i=1 hiwi =

∑
i∈Supp(h) hiwi, where

Supp(h) is the set of indexes for nonzero entries. We save the
nonzero entries of each row wT

i in a list, with corresponding
nonzero entries being saved. Then, the computational cost for
the matrix-vector is O(x% × y% ×mn) multiplications and
summations, and memory accesses. Thus, the computational
cost for matrix-vector multiplications is lower than the cost
for naive matrix-vector multiplications, which has an O(mn)
complexity.

Table 4. Results with and without combined sparseness
methods on SWB. The left WER displays the WER in
combination and the center and right WER are using neuron
sparseness and connection sparseness separately. The symbol
’*’ and ’()’ mean that the results are achieved with and
without retraining, respectively. The connection threshold
responds for 20% ’Conn Sparse Ratio’ is 0.2, for 40% is 0.12
and for 58% is 0.05.

Neuron
Sparse
Ratio

Conn
Sparse
Ratio

Calc
Time

WER
With and Without

Combination
100% 100% 100% 15.9 15.9 16.0
13% 47% 20.7% 16.6 16.2 16.1* (16.3)
15% 19% 13.3% 16.7* 16.2 16.9* (65.7)
15% 22% 14.5% 16.4* 16.2 16.3* (33.4)
15% 24% 15.3% 16.1* 16.2 16.2* (22.7)
28% 47% 39.2% 16.4 16.0 16.1* (16.3)
30% 38% 36.4% 16.4 15.7 16.1* (16.6)
30% 58% 46.9% 15.8 15.7 16.2* (16.1)

5. CONCLUSION

In this paper, we propose a new sparseness approach which
focuses on neuron sparseness rather than connection sparse-
ness. Our method derives from the fact that not only the
connections are sparse, but the output activation levels are
sparse as well. Our algorithm uses this sparseness via a
threshold function Tr(x) to control the ratio of the active
hidden neurons. This obtains 0.2% absolute error reduction
on SWB and 0.09% absolute error reduction on TIMIT
without re-training, reducing computation by 26% and 31%,
respectively. Combining neuron and connection sparseness
methods, the model size can be further compressed and the
WER is unchanged using re-training. Experiments on both
TIMIT and SWB datasets show substantial improvements in
calculation time. In the future, this approach is also applicable
to other types of neural networks, such as convolutional
neural networks(CNN). Moreover, the sparseness can be
targeted to specific networks topologies, containing more
physical meaning.

6. REFERENCES

[1] F. Seide, G. Li, and D. Yu, “Conversational speech
transcriptionn using context-dependent deep neural net-
works,” in INTERSPEECH, 2011, pp. 437C440.

[2] F. Seide, G. Li, X. Chen, and D. Yu, “Feature
engineering in context-dependent deep neural networks
for conversational speech transcription,” in ASRU. IEEE,
2011, pp. 24C29.

4957

[3] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-
dependent pre-trained deep neural networks for large
vocabulary speech recognition,” IEEE Trans. on Audio,
Speech, and Language Processing, vol. 20, pp. 30C42,
2012.

[4] D. Yu, F. Seide, G. Li, and L. Deng, “Exploiting
sparseness in deep neural networks for large vocabulary
speech recognition,” in ICASSP. 2012, pp. 4409–4412.

[5] T.N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy,
and B. Ramabhadran, “Low-rank matrix factorization
for deep neural network training with high-dimensional
output targets,” in ICASSP. IEEE, 2013.

[6] J. Xue, J.Y. Li, and Y.F. Gong, “Restructuring of
deep neural network acoustic models with singular value
decomposition,” in INTERSPEECH, 2013.

[7] G.E. Dahl, T.N. Sainath, and G.E. Hinton, “Improving
deep neural networks for LVCSR using rectified linear
units and dropout,” in ICASSP, 2013.

[8] M.D. Zeiler, M. Ranzato, R. Monga, M. Mao, K.
Yang, Q.V. Le, P. Nguyen, A. Senior, V. Vanhoucke,
J. Dean, and G. Hinton, “On rectified linear units for
speech processing,” in IEEE International Conference on
Acoustic Speech and Signal Processing (ICASSP 2013)
Vancouver, 2013.

[9] Attwell, D. and Laughlin, S. (2001). “An energy budget
for signaling in the grey matter of the brain,” Journal
of Cerebral Blood Flow and Metabolism, 21(10), 1133-
1145.

[10] Lennie, P. (2003). “The cost of cortical computation,”
Current Biology, 13, 493-497.

[11] Y. Bengio, A. Courville, and P. Vincent “Representation
learning: a review and new perspectives,” IEEE Trans.
on Pattern Analysis and Machine Intelligence, 2013, pp.
1798-2828.

[12] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse
rectifier neural networks,” in Proc. AISTATS, 2011.

[13] J.S. Garofolo, L.F. Lamel, W.M. Fisher, G.J. Fiscus,
Dahlgreen N.L. Pallett, D.S., and V. Zue, “Timit acoustic-
phonetic continuous speech corpus,” in Linguistic Data
Consortium, Philadelphia, 1993.

[14] G.E. Hinton, S. Osindero, and Y.-W. Teh, “A
fast learning algorithm for deep belief nets,” Neural
computation, vol. 18, no. 7, pp. 1527C1554, 2006.

[15] S. Zhang, Y. Bao, P. Zhou, H. Jiang, L. Dai, “Improving
deep neural networks for LVCSR using dropout and
shrinking structure,” in ICASSP. 2014 pp. 6849-6853.

4958

