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ABSTRACT 

Acoustic-to-articulatory inversion problem is usually studied in 
speaker-specific manner because both articulatory data and acoustic 
features contain speaker-specific components. This paper presents 
our work on speaker-adaptation training for this problem. We imple-
ment speaker adaptation in HMM-based acoustic-to-articulatory 
inversion mapping, and evaluate different combinatorial structures 
of the articulatory data and acoustic features. The HMM-based in-
version mapping models are built with single-stream and multi-
stream, independent clustering and shared clustering structures. The 
speaker adaptation is implemented in stream-independent structure 
and shared adaptation structure. The constrained maximum likeli-
hood linear regression method is used for the speaker-adaptive 
transformation. The experimental results show that the sharing of the 
speaker-adaptive transformation of the articulatory feature stream 
and acoustic feature stream can improve the estimation accuracy in 
inversion mapping. The multi-stream system with shared clustering 
and shared adaptive transformation has the best result among all the 
tested structures. 
 

Index Terms— speaker adaptation, acoustic-to-articulatory in-
version, maximum likelihood linear regression 

 

1. INTRODUCTION 

Acoustic-to-articulatory inversion is considered a difficult and ill-
posed problem due to its high nonlinearity and one-to-many nature. 
Moreover, both the speech acoustic features and the articulatory 
movements contain speaker-specific components, which depend on 
the shapes of articulators, speaking style of speakers and their gender, 
age etc. Many inversion methods have been proposed in both 
speaker-dependent manner and speaker-adaptation manner. In the 
speaker-dependent manner, there are methods such as codebook 
mapping [1], mixture density network [2], Gaussian mixture model 
(GMM) based mapping [3], and hidden Markov model (HMM) 
based methods [4-7]. In the study of the speaker-adaptation for the 
inversion problem, Hueber et al. [8] use an approach that merges the 
voice conversion step and the acoustic-articulatory inversion step; 
Hiroya and Honda [9] use a speaker adaptation method in HMM-
based speech production model; Hiroya and Mochida [10] proposed 
a multi-speaker articulatory trajectory formation based on speaker–
independent articulatory HMMs using adaptive training. 

Among all the inversion methods, HMM-based methods have 

many advantages. Firstly, context information can be taken into ac-
count in this method; secondly, once the HMMs are trained, the 
articulatory movements can be synthesized with only the HMM state 
sequence, which makes it possible to synthesize articulatory move-
ment from text without speech signal. Such methods have been 
realized in [11]. Moreover, the speaker adaptation method based on 
HMMs has been verified to be very effective, which has made it pos-
sible to adapt initial HMMs to a new speaker with a small amount of 
adaptation data. One important speaker adaptation technique is max-
imum likelihood linear regression (MLLR) [12-14], it estimates the 
speaker-adaptive transformation for each HMM. This method has 
been used in the adaptation of the articulatory movements such as in 
the work by Hiroya and Mochida [10]. However, the speaker adap-
tive training in the acoustic domain and the articulatory domain are 
independent in most of the previous research. The speaker-specific 
components of both acoustic features and articulatory features are 
not considered together. Therefore, we implement different model 
with different combinatorial structures to find out if the combination 
of the two feature streams can improve the performance of inversion 
mapping using speaker adaptation. The acoustic excitation and spec-
trum features and the articulatory data are used as different streams, 
the HMMs are built with single-stream structure and multi-stream 
structure. For the multi-stream structure, we use both stream-inde-
pendent clustering and stream-shared clustering method. The 
adaptation is implemented with stream-independent adaptation man-
ner and shared adaptation manner. 

2. HMM-BASED ARTICULATORY MODEL 

2.1. Single-stream structure 

The single-stream model is the HMM with only a stream of articu-
latory data. The framework of the HMMs training for articulatory 
features is shown in Figure 1. Let 1 2[ , ,..., ]NX x x x T T T T  denote the ob-
served articulatory feature sequence, N  is the length of the 
sequence. The observation feature vector for each frame consists of 
static articulatory features Stx and their velocity Stx  and accelera-
tion 2

Stx , which can be written as 2[ , , ]t St St Stx x x x  T T T T , A set of 
context-dependent HMMs   are estimated to maximize the likeli-
hood ( | )P X  . The training includes several stages as in the case of 
training an HMM-based speech synthesis system (HTS) [15]. The 
parameters of context-dependent HMMs are estimated by the Baum-
Welch algorithm. After the initial context-dependent HMM training, 
a decision tree is trained using the minimum description length 
(MDL) [16] criterion to cluster the probability density function of all 
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HMM states. The clustering is to alleviate the data sparsity problem. 

2.2. Multi-stream structure 

In the multi-stream structure, acoustic features are used to train 
HMMs along with the articulatory features. The flowchart is also 
shown in Figure 1. Let 1 2[ , , , ]NY y y y T T T T  denote the observed 
acoustic feature sequence. The observation feature vector for each 
frame consists of static acoustic features Sty  and their velocity Sty  
and acceleration 2

Sty , which can be written as: 
2[ , , ]t St St Sty y y y  T T T T . HMM set   for the combined acoustic and 

articulatory streams are estimated to maximize the likelihood func-
tion ( , | )P X Y  . The two streams are independent in the observation 
probabilities, therefore, we can write the likelihood function as 

1 1 11 1
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( , ) ( ) ( )j t t xj t yj tb x y b x b y                                         (2) 

where 1 2{ , , , }Nq q q q   denotes the state sequence shared by the 
two streams; i  denotes the initial state probability of state i  and 

ija  denotes the state transition probability from state i  to j . 
( )xjb x  and ( )yjb y  denote the state observation probability density 

function for state j  of articulatory features and acoustic features, 
respectively, which are single Gaussian distributions with diagonal 
covariance matrices. The parameter estimation procedure of context-
dependent HMMs for the multi-stream HMMs is the same as that of 
the single-stream.  

2.3. Clustering structures 

The decision tree is trained to cluster the probability density function 
of all HMM states after the initial context-dependent HMM training. 
We consider two structures for model clustering as described by 
Ling et al [11]: (1) independent clustering, cluster the acoustic model 
and articulatory model independently; (2) shared clustering, com-
bine the acoustic spectrum stream and articulatory stream and build 
a shared decision tree to cluster their HMM states. 

Note that the acoustic features include spectral parameters and 
excitation, specifically, the fundamental frequency (F0). Due to the 
nature of the two kinds of parameters, the F0 is modeled as multi-
space probability distributions (MSD) [17] while the spectral param-
eters are modeled as single-Gaussian distributions in each HMM 
state. Therefore, the F0 stream is always a separate stream during the 
clustering whether the spectral parameter and acoustic features are 
shared clustering or not. 

3. SPEAKER ADAPTATION 

3.1. Single-stream speaker adaptation 

The speaker adaptation is based on constrained maximum likelihood 
linear regression (MLLR) [12, 14], it computes a set of linear trans-
formations to reduce the mismatch between the initial model set and 
the adaptation data. In the single-stream HMM system, the con-
strained MLLR transformation of the mean vector of state m is 
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where   and ̂  denote the mean vector of observations before 
and after the transformation. The subscripts SX , SX  and 2

SX  
denote the static articulatory features and their velocity and acceler-
ation, respectively. S

m
XA , S

m
XA  and 2

S

m
XA  are S SX Xn n  adaptive 

matrices for static articulatory features and their velocity and accel-
eration, respectively ( SXn  is the dimension of the static articulatory 
feature vector); S

m
Xb , S

m
Xb  and 2

S

m
Xb represents 1

SXn 
 bias vectors. 

The transformation of the variance is corresponding to that applied 
to the mean. The transform is trained by the method described in 
[12]. To improve the flexibility of the adaptation process, a decision 
tree is used to group the states in the model set. 

3.2. Stream-independent adaptation 

There are two structures for the speaker-adaptive transformation in 
the multi-stream HMM system. The first one is stream-independent 
adaptation. In this structure, the constrained MLLR strategy is im-
plemented for the acoustic features and the articulatory features 
independently. The speaker-adaptive transformation for the articula-
tory features is the same as (3) and the transformation for acoustic 
features is also estimated by the same procedure. Two feature 
streams have independent speaker-adaptive transformations. 

3.3. Shared adaptation 

The second structure for multi-stream speaker adaptation is the 
shared adaptation structure. In this structure, the acoustic feature 
stream and the articulatory features share the same transformation 
matrix and bias vector sets, which have the following representation 
of transformation of the mean vector of state m : 

2 2

2 2

2 2

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

S S

S S

S S

S S

S S

S S

m m
X X
m m
Y Ym m

S Sm m
X Xm m

S Sm m
Y Ym m

m mS S
X X

m m
Y Y

A b

A b

A b

 
 
 
 
 

 

 
 

 

 
 

 

   
   
      
       
      
      
   
      

0 0

0 0

0 0

         (4) 

where the subscripts SY , SY  and 2
SY  represent the static acous-

tic features and their velocity and acceleration, respectively. m
SA , 

m
SA  and 2

m
SA  represent S Sn n  shared transformation matrices for 

static features and their velocity and acceleration, respectively. The 
dimension of the static feature vector is S SS X Yn n n  , SYn  is the 
dimension of the static acoustic feature vector. m

Sb  , m
Sb  and 2

m
Sb  

represents 1Sn   shared bias vectors. The transformation matrices 
are full matrices so that the dependency between features is consid-
ered. 

In the stream-independent adaptation structure each feature 
stream has its own speaker-adaptive transformation, the transform of 
each component of one stream is related to other components of this 

 
Figure 1: Flowchart of the articulatory HMMs training. The dashed 
part is used for multi-stream HMM training. The speaker-adaptation
training gives the clustered HMMs and speaker-adaptive transfor-
mations. 
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stream but independent from the components in another stream. In 
the shared adaptation, the speaker-adaptive transformation for each 
component consists of the linear combination of the two streams. 
Note that due to the MSD nature of the acoustic F0, the F0 stream is 
always independent in both of the structures. 

4. EXPERIMENTS 

4.1. Data 

In this paper we use MOCHA-TIMIT database [18], it contains two 
speakers’ data, one female (fsew0) and one male (mask0). The 460 
sentences of British TIMIT are uttered by each speaker. Only the 
waveforms and the electromagnetic articulography (EMA) data 
from this database are used. The EMA data is the position trajecto-
ries in 3D space of seven sensors attached to the tongue dorsum, 
tongue body, tongue tip, lower incisor, upper lip, lower lip and ve-
lum. The EMA data are sampled at 500Hz and the speech waveform 
is recorded at a sampling rate of 16 kHz. We downsample the EMA 
data to 200Hz, the normalization process described in [19] is per-
formed to reduce the noise. STRAIGHT analysis [20] is used to 
extract the line spectrum pairs (LSP) of order 24, the logarithm of 
gain and the logarithm of fundamental frequency (LF0). The frame 
length and frame shift are set to 25ms and 5ms respectively. 
Quinphone labels are used as context information, which has been 
proven to be effective in [11]. Our experiments use HTS tool-kit ver-
sion 2.2 [15, 22]. The hidden semi-Markov model (HSMM) [23] 
based force alignment tool HSMMAlign is used for the force aligns 
in our experiment. The female speaker is the initial speaker and the 
male speaker is the test speaker whose data is used for adaptation 
training and test. 

4.2. Model structures  

The HMMs are set to be 5 states left to right structure. Four adapta-
tion structures are evaluated in our experiments. The training 
procedures for the four structures are shown in Figure 2. 
a) SS: single-stream structure. This method use only the EMA 

stream. It is our baseline method; 
b) IC: independent clustering structure. It has three feature 

streams, EMA, LSP-E (LSP plus logarithm of gain) and LF0, 
they are independent during the HMM states clustering and the 
learning of speaker-adaptive transformations; 

c) SC: shared clustering structure. It has EMA, LSP-E and LF0 
stream, the EMA and LSP-E stream share one decision tree 
during the clustering but the speaker-adaptive transformations 
are stream-independent; 

d) SA: shared adaptation structure. It has EMA, LSP-E and LF0 
stream, the EMA and LSP-E stream share one decision tree 
during the HMM states clustering and the speaker-adaptive 
transformations are also shared as described in Section 3.3. 

The adaptation systems use all the 460 utterances of the initial 
speaker to train the initial HMMs; 46 utterances of the test speaker 
are adaptation data, and another 46 utterances are test data. In order 
to compare the speaker-adaptation training and speaker-dependent 
training, for the SS, IC and SC, we also implement speaker-depend-
ent training using the rest utterances of test speaker. 

The maximum likelihood parameter generation (MLPG) algo-
rithm [24] is applied to generate the optimal EMA trajectories using 
dynamic features. The optimal state sequence for the parameter gen-
eration is obtained by state alignment of the acoustic features with 
standalone acoustic HMMs, which are trained by speaker-adaptation 
training with acoustic features of the training data and adaptation 
data. This can be regarded as a stand-alone auto speech recognition 

(ASR) system. 
The structures are evaluated by the average of the root mean 

square error (RMSE) and Pearson product-moment correlation coef-
ficient between the estimated 14 EMA components and their ground 
truth. All silence and breath sections are removed in the evaluation. 

4.3. Independent clustering vs. shared clustering  

We first evaluate the independent-clustering structure and shared-
clustering structure using both speaker-adaptation training and 
speaker-dependent training. The number of leaf nodes in the tree-
based clustering will affect the systems’ performances. Therefore, in 
order to compare the structures with different leaf node numbers, we 
control the leaf node number by modifying the MDL. The default 
MDL factor is 1 for IC and SC. For SC, several MDL factor values 
are tested and the value 0.7 leads to the closest leaf node numbers to 
that of IC system. We show the result of the shared clustering struc-
ture with the MDL factor set to 1, 0.7 and 0.5, they are denoted as 
SC1, SC0.7 and SC0.5, respectively. The evaluation results of for 
SS, IC, SC1, SC0.7 and SC0.5 are shown in Figure 3, and the total 
leaf node numbers of HMM states after the clustering of the adapta-
tion systems are listed in Table 1. 

The experimental results show that the IC and all SC adaptation 
structures have lower RMSE and higher correlation than SS, which 
indicate that the acoustic features are helpful in training the HMMs 
of EMA data regardless of the clustering structure. The IC structure 
slightly extends the leaf node number of EMA compared with the 
SS structure and it yields the lowest average RMSE among the tested 
structures. In the SC1, the combination of EMA with LSP-E reduce 
the leaf node number to almost half of that of SS, and its performance 
for speaker-dependent system shows no significant advantage over 
SS. When we extend the leaf node number to close to the SS struc-
ture by modifying the MDL factor to 0.7, the average RMSE become 
close to that of IC, and the average correlation coefficient slightly 
surpasses that of IC. The leaf node number of SC0.5 is more than 
twice that of SS, and the performance of systems are not improving 
along with the increasing of the leaf node number. The MDL factor 
0.7 leads to the best shared clustering adaptation structure, but is still 
not better than IC. From this result we can infer that even combining 

 
Figure 2: Structures for adaptation training, the models consist of 
clustered HMMs and speaker-adaptive transformations. The dashed 
procedures are not necessary since we only estimate the EMA tra-
jectories. 
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the EMA with acoustic features for cluster is helpful in speaker-de-
pendent system, but only combine the two stream in clustering stage 
is not helpful in speaker-adaptation system. 

4.4. Independent adaptation vs. shared adaptation 

Figure 4 shows the evaluation results for all the adaptation structures. 
SA1 and SA0.7 denotes the shared-adaptation structure with MDL 
factor set to 1 and 0.7, respectively. State durations are obtained 
from stand-alone ASR trained by adaptation training with the acous-
tic features of training data and adaptation data. Moreover, we also 
use the state durations obtained from the ASR trained by speaker-
dependent training with all the test speakers’ data (note that it is not  
available in real application), these experiments are denoted by “ad-
aptation with SD-ASR” in the figure. The experiments show that the 
state durations obtained by speaker-adaptive ASR will cause around 
0.3mm higher average RMSEs than that by the speaker-dependent 
ASR. 

The average RMSE of SA1 is lower than SC1 while that of 
SA0.7 is lower than SC0.7, which indicates that shared speaker-
adaptive transformation can improve the estimation accuracy of the 
adaptation structure. Even though the SC0.7 does not show any ad-
vantage over IC, but with the shared speaker-adaptive 
transformation, the SA0.7 yields lower average RMSE than IC and 
the correlation performance surpasses that of IC. SA0.7 is the best 
adaptation structure among all the tested structures. It yields an av-
erage RMSE of 1.561mm and an average correlation coefficient of 
0.762 with 46 utterances of adaptation data from the test speaker. 

Figure 5 shows the evaluation for the SC0.7 and SA0.7 struc-
tures with different amount of adaptation data. The SA0.7 shows 
advantage over the SC0.7 regardless of the amount of adaptation 
data. The 414 adaptation utterances in the last two experiments are 
the same data that used for training of speaker-dependent HMMs, in 
other words, those two experiments use not only the same data of the 
test speaker as in the speaker-dependent system but also take ad-
vantage of more data of the initial speaker. The SA0.7 structure 
yields almost the same results with speaker-dependent system. 

5. CONCLUSIONS 

The experimental results prove that the speaker-adaptation training 
of HMMs is an effective method for articulatory inversion when the 
speakers’ data is insufficient. Combining with acoustic data, the 
speaker-adaptation training can get a better performance than use the 
articulatory data alone. We can improve the performance of speaker 
adaptation training of articulatory HMMs by sharing the MLLR-
based speaker-adaptive transformations. In speaker-adaptation sys-
tem, sharing both the cluster tree and the adaptive transformation 
shows advantages over sharing only cluster tree. The multi-stream 
HMM structure with shared clustering and shared adaptation trans-
formation is the best structure for EMA trajectory prediction among 
all the speaker-adaptation systems, and it is the suggested structure 
for this problem. Additional optimal methods can be adopted upon 
this structure for a better performance. For example, the additional 
maximum-a-posteriori (MAP) linear regression after the MLLR 
transformation can be used to improve the prediction accuracy. That 
is beyond the discussion of the combinatorial structure of the two 
streams. 
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Figure 4: Average RMSE and correlation for adaptation training. 

 

 

 
Figure 5: Average RMSE and correlation for adaptation training 
with different amount of adaptation data. Dep. denotes speaker-de-
pendent training. All the systems use the same state durations. 
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Figure 3: Average RMSE and correlation for speaker-dependent sys-
tem and speaker-adaptation system 
 
Table 1: The total number of leaf nodes of after states clustering in 
speaker-adaptation systems. 

 SS IC 
SC1/ 
SA1 

SC0.7 
/SA0.7 

SC0.5 

LSP-E - 2157 
3401 6917 14432 

EMA 6501 7239 

 

0.7

0.74

0.78

0.82
A

vg
. 

co
rr

el
at

io
n

speaker-dependent adaptation

1.3
1.4
1.5
1.6
1.7

SS IC SC1 SC0.7 SC0.5

A
vg

. R
M

S
E

s 
(m

m
)

4947



7. REFERENCES 

[1] S. Ouni and Y. Laprie, "Modeling the articulatory space using 
a hypercube codebook for acoustic-to-articulatory inversion," 
The Journal of the Acoustical Society of America, vol. 118, p. 
444, 2005. 

[2] K. Richmond, "A trajectory mixture density network for the 
acoustic-articulatory inversion mapping," in Proc. ICSLP, 
Pittsburgh,USA, pp. 577–580, 2006. 

[3] T. Toda, A. Black, and K. Tokuda, "Acoustic-to-articulatory 
inversion mapping with Gaussian mixture model," in Proc. 
ICSLP, Jeju, Korea, pp. 1129–1132, 2004. 

[4] Z. Le and S. Renals, "Acoustic-Articulatory Modeling With the 
Trajectory HMM," Signal Processing Letters, IEEE, vol. 15, pp. 
245-248, 2008. 

[5] S. Hiroya and M. Honda, "Determination of articulatory 
movements from speech acoustics using an HMM-based 
speech production model," in Proc. ICASSP, Orlando, U.S.A, 
pp. 437-440, 2002. 

[6] S. Hiroya and M. Honda, "Estimation of articulatory 
movements from speech acoustics using an HMM-based 
speech production model," Speech and audio processing, ieee 
transactions on, vol. 12, pp. 175-185, 2004. 

[7] A. B. Youssef, P. Badin, G. Bailly, and P. Heracleous, 
"Acoustic-to-articulatory inversion using speech recognition 
and trajectory formation based on phoneme hidden Markov 
models," Interspeech 2009, pp. 2255-2258, 2009. 

[8] T. Hueber, G. Bailly, P. Badin, and F. Elisei, "Speaker 
adaptation of an acoustic-to-articulatory inversion model using 
cascaded Gaussian mixture regressions," in Proc. Interspeech, 
2013. 

[9] S. Hiroya and M. Honda, "Speaker adaptation method for 
acoustic-to-articulatory inversion using an HMM-based speech 
production model," IEICE TRANSACTIONS on Information 
and Systems, vol. 87, pp. 1071-1078, 2004. 

[10] S. Hiroya and T. Mochida, "Multi-speaker articulatory 
trajectory formation based on speaker-independent articulatory 
HMMs," Speech Communication, vol. 48, pp. 1677-1690, 2006. 

[11] Z.-H. Ling, K. Richmond, and J. Yamagishi, "An Analysis of 
HMM-based prediction of articulatory movements," Speech 
Communication, vol. 52, pp. 834-846, 2010. 

[12] M. J. Gales, "Maximum likelihood linear transformations for 
HMM-based speech recognition," Computer speech & 
language, vol. 12, pp. 75-98, 1998. 

[13] C. J. Leggetter and P. C. Woodland, "Maximum likelihood 
linear regression for speaker adaptation of continuous density 
hidden Markov models," Computer speech & language, vol. 9, 
pp. 171-185, 1995. 

[14] V. V. Digalakis, D. Rtischev, and L. G. Neumeyer, "Speaker 
adaptation using constrained estimation of Gaussian mixtures," 
Speech and audio processing, ieee transactions on, vol. 3, pp. 
357-366, 1995. 

[15]H. Zen, et al., "The HMM-based speech synthesis system (HTS) 
version 2.0," in Proc. Sixth ISCA Workshop on Speech 
Synthesis, pp. 294-299, 2007. 

[16] K. Shinoda and T. Watanabe, "MDL-based context-dependent 
subword modeling for speech recognition," Journal of Acoustic 
Society of Japan (E), vol. 21, pp. 79-86, 2000. 

[17] K. Tokuda, T. Masuko, N. Miyazaki, and T. Kobayashi, "Multi-
space probability distribution HMM," IEICE TRANSACTIONS 
on Information and Systems, vol. 85, pp. 455-464, 2002. 

[18] A. Wrench, "The MOCHA-TIMIT articulatory database," 

http://www.cstr.ed.ac.uk/artic/mocha.html, Queen Margaret 
University College. 1999. 

[19] K. Richmond, "Estimating articulatory parameters from the 
acoustic speech signal," PhD thesis, The Centre for Speech 
Technology Research, Edinburgh University, 2002. 

[20] H. Kawahara, I. Masuda-Katsuse, and A. de Cheveigné, 
"Restructuring speech representations using a pitch-adaptive 
time–frequency smoothing and an instantaneous-frequency-
based F0 extraction: Possible role of a repetitive structure in 
sounds," Speech Communication, vol. 27, pp. 187-207, 1999. 

[21] S. Young, et al., "The HTK book (for HTK version 3.4)," 
Cambridge university engineering department, 2006. 

[22] K. Tokuda, et al., "The HMM-based speech synthesis system 
(HTS)," http://hts.ics.nitech.ac.jp. 2011. 

[23] O. Keiichiro, et al., "A fully consistent hidden semi-Markov 
model-based speech recognition system," IEICE 
TRANSACTIONS on Information and Systems, vol. 91, pp. 
2693-2700, 2008. 

[24] K. Tokuda, et al., "Speech parameter generation algorithms for 
HMM-based speech synthesis," in Proc. ICASSP 2000, pp. 
1315-1318 vol.3, 2000. 

 

 

4948


