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ABSTRACT

Voice conversion (VC) is being widely researched in the field of
speech processing because of increased interest in using such pro-
cessing in applications such as personalized Text-To-Speech sys-
tems. We present in this paper an exemplar-based VC method us-
ing Non-negative Matrix Factorization (NMF), which is different
from conventional statistical VC. In our previous exemplar-based
VC method, input speech is represented by the source dictionary
and its sparse coefficients. The source and the target dictionaries are
fully coupled and the converted voice is constructed from the source
coefficients and the target dictionary. In this paper, we propose an
Activity-mapping NMF approach and introduce mapping matrices
between source and target sparse coefficients. The effectiveness of
this method was confirmed by comparing its effectiveness with that
of a conventional Gaussian Mixture Model (GMM)-based method
and a conventional NMF-based method.

Index Terms— voice conversion, sparse representation, non-
negative matrix factorization, NMF

1. INTRODUCTION

Voice conversion (VC) is a technique for converting specific infor-
mation in speech while maintaining the other information in the ut-
terance. One of the most popular VC applications is speaker conver-
sion [1]. In speaker conversion, a source speaker’s voice individual-
ity is changed to a specified target speaker’s so that the input utter-
ance sounds as though a specified target speaker had spoken it. VC
is also being used for assistive technology [2], Text-To-Speech sys-
tems [3], spectrum restoring [4], bandwidth extension for audio [5],
etc.

Many statistical approaches to VC have been studied [1, 6, 7].
Among these approaches, the Gaussian mixture model (GMM)-
based mapping approach [1] is widely used. In this approach, the
conversion function is interpreted as the expectation value of the
target spectral envelope. The conversion parameters are evaluated
using Minimum Mean-Square Error (MMSE) on a parallel training
set. A number of improvements in this approach have been pro-
posed. Toda et al. [8] introduced dynamic features and the global
variance (GV) of the converted spectra over a time sequence. He-
lander et al. [9] proposed transforms based on partial least squares
(PLS) in order to prevent the over-fitting problem associated with
standard multivariate regression. There have also been approaches
that do not require parallel data that make use of GMM adaptation
techniques [10] or eigen-voice GMM (EV-GMM) [11, 12].

In recent years, approaches based on sparse representations have
gained interest in a broad range of signal processing. In [13, 14], we
proposed exemplar-based VC, which is based on the idea of sparse
representation. In our exemplar-based VC, we use Non-negative Ma-
trix Factorization (NMF) [15], which is a well-known approach for

source separation and speech enhancement [16, 17, 18]. In our VC,
source exemplars and target exemplars are extracted from the par-
allel training data, having the same texts uttered by the source and
target speakers. The input source signal is expressed with a sparse
representation of the source exemplars using NMF. By replacing a
source speaker’s exemplar with a target speaker’s exemplar, the orig-
inal speech spectrum is replaced with the target speaker’s spectrum.
Because our approach is not a statistical one, we assume that our ap-
proach can avoid the over-fitting problem and create a natural voice.

Moreover, our exemplar-based VC method has noise robust-
ness [14]. The noise exemplars, which are extracted from the
before- and after-utterance sections in an observed signal are used
as the noise dictionary, and the VC process is combined with an
NMF-based noise reduction method. On the other hand, NMF is
one of the clustering methods. In our exemplar-based VC, if the
phoneme label of a source exemplar is given, we can discriminate
the phoneme of the input signal by using NMF. In [19], we proposed
assistive technology for articulation disorders by using this function
of our exemplar-based VC. NMF-based VC is also applied to multi-
modal VC [20]. Wu et. al applied a spectrum compression factor to
NMF-based VC and improved the conversion quality [21].

In this paper, we propose advanced exemplar-based VC us-
ing Activity-mapping NMF. In those conventional NMF-based VC
methods, input speech is represented by the source dictionary and
its sparse coefficients. The source and the target dictionaries are
fully coupled and the converted voice is constructed from the source
coefficients and the target dictionary. However, there is mismatching
between the source coefficients and the target coefficients. In this
paper, we propose Activity-mapping NMF for exemplar-based VC
in order to solve this problem. By using Activity-mapping NMF,
a mapping function, which shows the relationship between two
speakers, is learned so that mismatching between the source and the
target sparse coefficients are compensated for. The effectiveness of
this method was confirmed by comparing it with the conventional
NMF-based method and the conventional GMM-based method.

The rest of this paper is organized as follows: In Section 2, the
basic idea of NMF-based VC is described. In Section 3, our pro-
posed method is described. In Section 4, the summary of our algo-
rithm is described. In Section 5, the experimental data are evaluated,
and the final section is devoted to our conclusions.

2. EXEMPLAR-BASED VOICE CONVERSION USING
NON-NEGATIVE MATRIX FACTORIZATION

In the exemplar-based approach, the observed signal is represented
by a linear combination of a small number of bases.

vj ≈
∑K

k=1 wkhk,j = Whj (1)

vj represents the j-th frame of the observation. wk and hk,j repre-
sent the k-th basis and the weight, respectively. W = [w1 . . .wK ]
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and hj = [h1,j . . . hK,j ]
T are the collection of the bases and the

stack of weights. In this VC method, each basis denotes the ex-
emplar of the spectrum, and the collection of exemplar W and the
weight vector hj are called the ‘dictionary’ and ‘activity’, respec-
tively. When the weight vector hj is sparse, the observed signal can
be represented by a linear combination of a small number of bases
that have non-zero weights. (1) is expressed as the inner product of
two matrices using the collection of the frames or bases.

V ≈ WH (2)
V = [v1, . . . ,vJ ], H = [h1, . . . ,hJ ]. (3)

J represents the number of the frames. In this paper, we use NMF,
which is a sparse coding method in order to estimate the activity
matrix.

Fig. 1 shows the basic approach of our exemplar-based VC,
where I, J, and K represent the numbers of dimensions, frames,
and bases, respectively. Our VC method needs two dictionaries that
are phonemically parallel. Ws represents a source dictionary that
consists of the source speaker’s exemplars and Wt represents a tar-
get dictionary that consists of the target speaker’s exemplars. These
two dictionaries consist of the same words and are aligned with dy-
namic time warping (DTW) just as conventional GMM-based VC is.
Hence, these dictionaries have the same number of bases. In this VC
method, all frames from parallel training data are used as exemplars.

Ws and Wt are fixed and source speaker’s activity Hs is esti-
mated by using NMF. The cost function of NMF is defined as fol-
lows,

d(Vs,WsHs) + λ||Hs||1 (4)

In (4), the first term is Kullback-Leibler (KL) divergence between
Vs and WsHs and the second term is the sparse constraint with the
L1-norm regularization term that causes activity matrix to be sparse.
λ represents a weight of sparse constraint. This function is mini-
mized by iteratively updating the following equation.

Hs
n+1 = Hs

n. ∗ (WsT(Vs./(WsHs)))

./(WsT1I×J + λ1K×J) (5)

.∗ and ./ denote element-wise multiplication and division, respec-
tively.

This method assumes that when the source signal and the target
signal (which are the same words but spoken by different speakers)
are expressed with sparse representations of the source dictionary
and the target dictionary, respectively, the obtained activity matrices
are approximately equivalent. Estimated source activity Hs is mul-
tiplied to target dictionary Wt and target spectra V̂t is constructed.

3. VOICE CONVERSION BASED ON ACTIVITY-MAPPING
NON-NEGATIVE MATRIX FACTORIZATION

3.1. Basic Idea

In the NMF-based approach described in Section 2, the parallel dic-
tionary consists of the parallel training data themselves. Therefore,
as the number of the bases in the dictionary increases, the input
signal comes to be represented by a linear combination of a large
number of bases rather than as a small number of bases. When the
number of bases that represent the input signal becomes large, the
assumption of similarity between source and target activities may
be weak due to the influence of the mismatching between the input
signal and the selected bases.

s
VI

J

s
W

t
W

Parallel data

K

Copy

s
H

s
H

t
V̂

Source

spectral features

(I x J)

Source and target

dictionaries

(I x K)

Converted 

spectral features

(I x J) Activity of

source signal

(K x J)

Activity

estimation

Construction

Fig. 1. Basic approach of NMF-based voice conversion

Fig. 2 shows an example of the activity matrices estimated from
a Japanese word “akogareru” (“adore” in English), where one is ut-
tered by a male and the other by a female. These words are aligned
by using DTW in advance, and the source and target speaker’s dic-
tionaries, which consist of 250 bases, are used in activity estimation.
The estimated activities are different although input features and dic-
tionaries are parallel. We assume that this problem degrades the per-
formance of the exemplar-based VC. Hence, in this paper, we in-
troduce a mapping function between the source and target speaker’s
activities.

Fig. 3 shows the conversion procedure of our VC method. In
the Activity Estimation stage, a source spectral exemplar matrix Vs

is decomposed into a linear combination of bases from the source
dictionary Ws. The indexes and weights of the bases are estimated
using NMF as source activity Hs. In the next stage, the Activity
Transformation stage, estimated source activity Hs is transformed
into target activity Ht using a pre-learned mapping matrix A. This
mapping matrix spans a hidden space between the source and target
speakers. Finally, in the Target Construction stage, transformed ac-
tivity Ht is multiplied by the target dictionary which consists of ex-
emplars of the target speaker’s spectra, and then the converted speech
V̂t is constructed.
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3.2. Activity-mapping Non-negative Matrix Factorization

We propose the following cost function in order to estimate the de-
sired mapping:

d(Vs,WsHs) + λ||Hs||1 + d(Vt,WtAHs) + λ||AHs||1 (6)

The first and the second terms are the same as (4). The third term is
the KL-divergence between Vt and WtAHs and the fourth term is
the sparse constraint of AHs.

In order to estimate Hs precisely in the Activity Estimation
stage, Hs is estimated using the first term and the second term of (6).
The activity mapping matrix A is estimated by minimizing (6). The
updating rule is determined by adapting Jensen’s inequality 1.

An+1 = An./((W
tT1(I×J) + λ1(K×K)).∗(1(J×K)HsT))

.∗(WtT(Vt./(WtAnH
s))HsT) (7)

In the Activity Estimation stage, the source activity Hs is esti-
mated using (5). In the next Activity Transformation stage, the target
activity Ht is obtained using pre-trained A and the converted spectra
V̂t is constructed as follows in the final Target Construction stage:

V̂t = WtHt = WtAHs (8)

4. DICTIONARY CLUSTERING AND SELECTING

Our conventional VC in Section 2 holds all the training data as one
dictionary pair. In the case of activity-mapping NMF, a mapping ma-
trix obtained from only one dictionary pair is not enough to cover all
the variations of speech spectra because speech spectra vary widely.
Therefore, we divide the parallel data into a numbers of clusters and
adopt activity-mapping NMF for each cluster.

1The derivation of (7) is uploaded to http://www.me.cs.scitec.
kobe-u.ac.jp/aihara/ICASSP2015.pdf

Our clustering algorithm is similar to the k-means algorithm but
uses KL-divergence instead of squared Euclidean distances. Input
data zj = [vs

j
T,vt

j
T
]T is clustered by using the following cost func-

tion:

D =
J∑

j=1

d(zj ,mcj ) (9)

zj , mcj and J represent the j-th joint feature of the source and tar-
get spectra, the cj-th cluster and number of frames, respectively. cj
represents a cluster index of the j-th frame, which is decided as fol-
lows:

cj = arg min
l

d(zj ,ml) (10)

l represents the index of cluster.
In the target construction stage, a cluster is selected for an input

spectrum. The cluster of the input spectrum is decided using NMF.

cj = arg min
l

d(vs
j ,W

s
lh

s
l j) + λ||hs

l j
||1

s.t. hs
l j ≥ 0 (11)

Ws
l represents the dictionary of l-th cluster. hs

l j minimizing (11) is
estimated iteratively, applying (5).

Our proposed algorithm is summarized in Table 1.

Table 1. Algorithm of Activity-Mapping VC
Initializing for estimation of activity-mapping

Set source and target exemplars to Vs and Vt.
Set source and target dictionaries to Ws and Wt.
A and Hs are initialized with a random matrix.

Clustering
Jointed Vs and Vt are clustered using (9).

For each iteration
For each cluster
• Optimize Hs by (5)
• Optimize A by (7)

Initializing for conversion
Set input spectra Vs, mapping matrix A,
source dictionary Ws, target dictionary Wt.

Clustering
Cluster the input spectrum vs

j using (11).
For each iteration

For each cluster
• Optimize Hs by (5)
• Construct V̂t by (8)

5. EXPERIMENTAL RESULTS

5.1. Experimental Conditions

The proposed VC technique was evaluated by comparing it with the
conventional NMF-based method [14] (referred to as the “sample-
based method” in this paper) and the conventional GMM-based
method in a speaker-conversion task using clean speech data. The
source speaker and target speaker were one male and one female
speaker, respectively, whose speech is stored in the ATR Japanese
speech database [22]. The sampling rate was 12 kHz. In our pro-
posed method, λ is set to be 0.1. The number of dictionary clusters
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is set to be 64. Fifty sentences were used for training the dictio-
nary and the mapping matrix for our proposed VC. The same 50
sentences were used as training data for the GMM-based VC and
sample-based method.

In the proposed and sample-based methods, the dimension num-
ber of the spectral feature is 2,565. It consists of a 513-dimensional
STRAIGHT spectrum [23] and its consecutive frames (the 2 frames
coming before and the 2 frames coming after). The number of
iterations for estimating the activity in the proposed and sample-
based methods was 500. In the conventional GMM-based method,
MFCC+∆MFCC+∆∆MFCC is used as a spectral feature. Its num-
ber of dimensions is 60. The number of Gaussian mixtures was set
to 96, which is experimentally selected.

In this paper, F0 information is converted using a conventional
linear regression based on the mean and standard deviation [8]. The
other information, such as aperiodic components, is synthesized
without any conversion.

In order to evaluate our proposed method, we conducted objec-
tive and subjective evaluations. For the objective evaluation, 50 sen-
tences that are not included in the training data were evaluated. The
spectral distortion improvement ratio (SDIR) [dB] represented as the
following equation, was used for objective evaluation.

SDIR[dB] = 10 log10

∑I
i |V

t(i)−Vs(i)|2∑I
i |Vt(i)− V̂t(i)|2

(12)

Here, the source spectrum matrix Vs, target spectrum matrix Vt

and converted spectrum matrix V̂t are 513-dimensional STRAIGHT
spectra, which are normalized so that the sum of the magnitudes over
frequency bins equals unity. For the subjective evaluation, the XAB
test was carried out. Twenty-five sentences that are not included in
the training data were evaluated. In an XAB test, the target utterance
is shown as reference X. The subject listened to a voice converted
by our proposed method and by conventional methods. They se-
lected the samples which they felt have better quality. A total of 10
Japanese speakers took part in the test using headphones.

5.2. Results and Discussion

Fig. 4 shows the SDIR for each method. “GMM” shows the SDIR
of the conventional statistical VC method. “NMF” shows the SDIR
of the conventional NMF-based method explained in Sec. 2. “cls-
NMF” shows the SDIR of the NMF-based method with dictionary
clustering but without activity mapping. “Act-NMF” shows the
SDIR of our proposed method which is combined dictionary cluster-
ing and activity mapping. As shown in the figure, the improvement
ratio of “NMF” is lower than that of the conventional GMM-based
method. However, the improvement ratio of our proposed “Act-
NMF” is higher than the other method. This result shows the
effectiveness of activity mapping in NMF-based VC. The improve-
ment ratio of “cls-NMF” is lower than the other methods. These
results imply that there is still room for improvement in the dictio-
nary clustering method. The improvement of dictionary clustering
will enhance the effectiveness of our proposed VC method.

Fig. 5 shows the results of the XAB test. The left side shows
the preference score between GMM-based VC and the proposed
method. The right side shows the preference score between sample-
based VC and the proposed method. The error bars show a 95%
confidence score. The results of these tests were confirmed by a p-
value test of 0.05. Our proposed VC method obtained a higher score
than GMM-based conversion. We assume that our proposed method
can create a natural-sounding voice because our method is exemplar-
based. It also obtained a higher score than the sample-based VC

method. This result shows that Activity-mapping NMF can capture
the relationship between source and target exemplars and enhance
the conversion quality of exemplar-based VC.
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6. CONCLUSIONS

We have proposed a novel activity mapping method for exemplar-
based VC using NMF. Our proposed method optimizes the mapping
matrix in the sparse space between the source and target dictionar-
ies. The learned mapping matrix spans a hidden space between
the source and target speakers. Objective and subjective evalua-
tions show the effectiveness of our method compared to conventional
NMF and GMM-based VC.

Some problems still remain with our method. We employed a
k-means based dictionary clustering method to our VC because our
activity mapping method degrade the performance of VC when it is
adopted for a large-size dictionary. However, the objective evalu-
ation shows that the dictionary clustering without activity mapping
degrades the performance of exemplar-based VC. In [24], we pro-
posed a phoneme-categorized dictionary that enhances the perfor-
mances of exemplar-based VC. A phoneme-categorized dictionary
does not work well with activity-mapping NMF because the number
of exemplars in each sub-dictionary is too large. (There are 10 sub-
dictionaries in [24]. We used 64 sub-dictionaries in this paper.) In
future work, we will research a novel dictionary clustering method
that is better matched with our exemplar-based VC using activity
mapping.

The proposed method requires higher computation times than
the GMM-based method. In [25], we proposed NMF-based VC
that reduce the computational cost for conversion. Wu et. al also
proposed method for NMF-based VC to reduces the computational
cost [21]. In future work, we will combine these methods and inves-
tigate the optimal number of bases for better performance.

Also, we will apply our method to noisy environments and an
assistive technology for people with articulation disorders.
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