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ABSTRACT

Long short-term memory (LSTM) is a specific recurrent neural
network (RNN) architecture that is designed to model temporal
sequences and their long-range dependencies more accurately than
conventional RNNs. In this paper, we propose to use deep bidirec-
tional LSTM (BLSTM) for audio/visual modeling in our photo-real
talking head system. An audio/visual database of a subject’s talk-
ing is firstly recorded as our training data. The audio/visual stereo
data are converted into two parallel temporal sequences, i.e., con-
textual label sequences obtained by forced aligning audio against
text, and visual feature sequences by applying active-appearance-
model (AAM) on the lower face region among all the training image
samples. The deep BLSTM is then trained to learn the regression
model by minimizing the sum of square error (SSE) of predicting
visual sequence from label sequence. After testing different network
topologies, we interestingly found the best network is two BLSTM
layers sitting on top of one feed-forward layer on our datasets. Com-
pared with our previous HMM-based system, the newly proposed
deep BLSTM-based one is better on both objective measurement
and subjective A/B test.

Index Terms— BLSTM, RNN, AAM, talking head

1. INTRODUCTION

Talking heads are useful in applications of human-machine interac-
tion, e.g., reading emails, news or eBooks, acting as an intelligent
voice agent or a computer assisted language teacher, etc. A lively,
lip-sync talking head can attract the attention of a user, make the
human/machine interface more engaging or add entertainment in-
gredients to an application. Our motivation is to build a photo-real
talking head where the animation is video realistic: that is, we desire
our talking head to look as much as possible as if it were a camera
recording of a human subject, and not that of a cartoon character.

To synthesize visual speech animations from audio-video paral-
lel data, various approaches have been proposed, such as: key-frame
based interpolation [1], unit selection synthesis [2], 3D model-based
animation [3], HMM-based synthesis and its variants [4–7], and the
hybrid approach [8] using the HMM predicted trajectory [9] to guide
the sample selection. For both HMM-based parametric and HMM-
guided hybrid approaches, the statistically trained HMM is crucial
since the HMM predicted visual trajectories to a large extent de-
termine how well the visual lips can be rendered. Although HMM
can model sequential data efficiently, there are still some limitations,
such as the wrong model assumptions out of necessity, e.g., Gaussian
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mixture model (GMM) and its diagonal covariance, and the greedy,
hence suboptimal, search derived decision-tree based contextual s-
tate clustering.

Motivated by the deep neural network (DNN)’s superior perfor-
mance in automatic speech recognition [10], NN-based approaches
have been explored [11] in the speech synthesis field. There are sev-
eral advantages of the deep NN-based synthesis approaches: it can
model long-span, high dimensional and the correlation of input fea-
tures; it is able to learn non-linear mapping between input and output
with a deep-layered, hierarchical, feed-forward and recurrent struc-
ture; it has the discriminative and predictive capability in generation
sense, with appropriate cost function(s), e.g. generation error.

There are two mainstream neural net architectures, feed forward
vs. recurrent. Recurrent neural networks (RNNs) are able to incor-
porate contextual information from past inputs, which allows them to
instantiate a wide range of sequence-to-sequence maps. Schuster et
al. [12] propose the bidirectional RNNs (BRNNs) which can incor-
porate contextual information from both past and future inputs. But
conventional RNNs cannot well model the long-span relations in se-
quential data because of the vanishing gradient problem. Hochreiter
et al. [13] found that the LSTM architecture, which uses purpose-
built memory cells to store information, is better at finding and ex-
ploiting long range context. Combining BRNNs with LSTM gives
BLSTM, which can access long-range context in both directions.

In this paper, we propose a deep BLSTM-based approach for
visual speech synthesis. The audio/visual parallel training data are
converted into sequences of contextual labels and visual feature vec-
tors, respectively. Like [14], we adopt the AAM algorithm to model
the lower face and take the low dimensional appearance parameters
as the visual features. The deep BLSTM neural network is trained
to learn the regression model between the two audio and visual par-
allel sequences by minimizing the generation errors, in which the
input layer is the label sequence and the output prediction layer is
the AAM visual parameter sequence. In the synthesis stage, the pre-
dicted AAM visual parameter sequence can be restored back to high
quality photo realistic face images and render the full face talking
head with lip-synced animation.

The rest of this paper is organized as follows. Section 2 gives
an overview of the system. The audio/visual feature representation
and extraction are described in Section 3. Section 4 presents the
deep BLSTM architecture and training. Experimental results are dis-
cussed in Section 5. Finally, we draw our conclusions in Section 6.

2. SYSTEM OVERVIEW

Fig. 1 shows the system overview of the proposed photo-real talking
head using deep BLSTM networks. Firstly, an audio/visual database
of a subject talking to a camera with frontal view of his/her face
is recorded as our training data. In the training stage, the audio
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Fig. 1. System overview of the proposed talking head.

is converted into a sequence of contextual phoneme labels L using
forced alignment, and the corresponding lower face image sequence
is transformed into AAM feature vectors V. Then we train the deep
BLSTM neural networks to learn the regression model between the
two audio and visual parallel sequences by minimizing the SSE of
the prediction, in which the input layer is the label sequence L and
the output prediction layer is the visual feature sequence V. In the
synthesis stage, for any input text with natural or synthesized speech
by text-to-speech (TTS), we first extract the label sequence L from
them and then predict the visual AAM parameters V̂ using the well
trained deep BLSTM network. Finally, the predicted AAM visual
parameter sequence V̂ can be reconstructed to high quality photo
realistic face images and rendering the full face talking head with
lip-synced animation.

3. AUDIO/VISUAL FEATURE REPRESENTATION

3.1. Contextual labels L

The input of a desired talking head system can be any arbitrary text
along with natural audio recordings or synthesized speech by TTS.
For natural recordings, the phoneme/state time alignment can be ob-
tained by conducting forced alignment using a trained speech recog-
nition model. For TTS synthesized speech, the phoneme/state se-
quence and time offset are a by-product of the synthesis process.
Therefore, for each speech utterance, we convert the phoneme/state
sequence and their time offset into a label sequence, denoting as
L = (l1, . . . , lt, . . . , lT ), where T is the number of frames in the
sequence.

The format of the frame-level label lt uses the one-hot represen-
tation, i.e., one vector for each frame, shown as follows:

[0, . . . , 0, . . . , 1︸ ︷︷ ︸
K

, 1, . . . , 0, . . . , 0︸ ︷︷ ︸
K

, 0, 0, 1, . . . , 0︸ ︷︷ ︸
K

, 0, 1, 0︸ ︷︷ ︸
3

],

where K denotes the number of phonemes. We use triphone
plus the information of three states to identify lt. The first 3 K-
element sub-vectors denote the identities of the left, current and right
phonemes in the triphone, respectively, and the last 3 elements rep-
resent the phoneme state which can be obtained from natural record-
ings or TTS synthesized speech. Please note that the contextual label
can be easily extended to contain richer information, like positions in
syllables, in words, stress, part-of-speech, etc. Due to the limitation
of the training data, in our experiment we only consider phoneme
and state level labels.

(a) 51 facial feature points. (b) The texture of a lower face.

Fig. 2. Facial feature points and the texture of a lower face.

3.2. AAM visual feature V
In our system, the visual stream is a sequence of lower face images
which are strongly correlated to the underlying speech. As the raw
face image is hard to model directly due to the high dimensionality,
we use AAM [15] for visual feature extraction. AAM is a joint sta-
tistical model compactly representing both the shape and the texture
variations and the correlation between them.

Since the speaker moves his/her head naturally during record-
ing, we perform head pose normalization among all the face images
before AAM modeling. With the help of an effective 3D model-
based head pose tracking algorithm [16], the head pose in each im-
age frame is normalized to a fully frontal view and further aligned.

The shape of the j-th lower face, sj , can be represented by the
concatenation of the x and y coordinates of N facial feature points:

sj = (xj1, xj2, . . . , xjN , yj1, yj2, . . . , yjN ), (1)

where j = 1, 2, . . . , J and J is the total number of the face images.
In this work, we use a set of 51 facial feature points, as shown in Fig.
2 (a). The mean shape is simply defined by

s0 =
∑J

j=1
sj/J. (2)

Applying principal component analysis (PCA) to all J shapes,
sj can be given approximately by:

sj = s0 +
∑Nshape

i=1
ajis̃i = s0 + ajPs, (3)

where Ps = [s̃1, s̃2, . . . , s̃i, . . . , s̃Nshape ]
> denotes the eigenvec-

tors corresponding to the Nshape largest eigenvalues and aj =
[aj1, aj2, . . . , aji, . . . , ajNshape ] is the j-th shape parameter vector.

Accordingly, the texture of the j-th face image, tj , is defined by
a vector concatenating the R/G/B value of every pixel that lies inside
the mean shape s0:

tj = (rj1, rj2, . . . , rjU , gj1, gj2, . . . , gjU , bj1, bj2, . . . , bjU ), (4)

where j = 1, 2, . . . , J and U is the total number of pixels.
As the dimensionality of the texture vector is too high to use

PCA directly, we apply EMPCA [17] to all J textures. As a result,
the j-th texture tj can be given approximately by:

tj = t0 +
∑Ntexture

i=1
bjit̃i = t0 + bjPt, (5)
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where t0 is the mean texture, Pt contains the eigenvectors corre-
sponding to theNtexture largest eigenvalues, and bj is the j-th texture
parameter vector.

The above shape and texture models can only control the shape
and texture separately. In order to recover the correlation between
the shape and the texture, aj and bj are combined in another round
of PCA:

(aj ,bj) =
∑Nappearance

i=1
vjiṽi = vjPv, (6)

and assuming that Pvs and Pvt are formed by extracting the first
Nshape and the last Ntexture values from each component in Pv . Sim-
ply combining the above equations gives:

sj = s0 + vjPvsPs = s0 + vjQs, (7)
tj = t0 + vjPvtPt = t0 + vjQt. (8)

Now, we can reconstruct the shape and texture of the j-th low-
er face image by only one parameter vector vj , and vj is the j-th
appearance parameter vector which we use as AAM visual feature.
Subsequently, the lower face sequence with T frames can be repre-
sented by the visual feature sequence V = (v1, . . . ,vt, . . . ,vT ).

4. DEEP BLSTM FOR TALKING HEAD ANIMATION

4.1. Network structure
The extracted label sequence L and visual feature sequence V are t-
wo time varying parallel sequences. After resampling, we can easily
make the two sequences the same frame rate. In our BLSTM net-
work, as shown in Fig. 3, label sequence L is the input layer, and
visual feature sequence V serves as the output layer and H denotes
the hidden layer. In particular, at t-th frame, the input of the network
is the t-th label vector lt and the output is the t-th visual feature
vector vt. As described in [18], the basic idea of this bidirection-
al structure is to present each sequence forwards and backwards to
two separate recurrent hidden layers, both of which are connected
to the same output layer. This provides the network with complete,
symmetrical, past and future context for every point in the input se-
quence. Please note that in Fig. 3, more hidden layers can be added
in to construct a deep BLSTM.

In the training stage, we have multiple sequence pairs of L and
V. As we represent both sequences as continuous numerical vectors,
the network is treated as a regression model minimizing the SSE of
predicting V̂ from L. In the test (or synthesis) stage, given any arbi-
trary text along with natural or synthesized speech, we firstly convert
them into a sequence of labels, then feed into the trained BLSTM
network, and the output of the network is the predicted visual AAM
feature sequence. After reconstructing the AAM feature vectors to
RGB images, we can get the photo realistic image sequence of the
lower face. Finally, we stitch the lower face to a background face
and render the facial animation of the talking head.

4.2. Network training
Learning deep BLSTM network can be regarded as optimizing a d-
ifferentiable error function

E(w) =
∑Mtrain

k=1
Ek(w), (9)

where Mtrain represents the number of sequences in the training da-
ta and w denotes the network inter-node weights. In our task, the
training criterion is to minimize the SSE between the predicted vi-
sual features V̂ = (v̂1, v̂2, . . . , v̂T ) and the ground truth V =
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Fig. 3. BLSTM neural network in our talking head system.

(v1,v2, . . . ,vT ). For a particular input sequence k, the error func-
tion takes the form

Ek(w) =
∑Tk

t=1
Ekt =

1

2

∑Tk

t=1

∥∥∥ v̂k
t − vk

t

∥∥∥ 2

, (10)

where Tk is the total number of frames in the k-th sequence. In every
iteration, we calculate the error gradient with the following equation:

∆w(r) = m∆w(r − 1)− α∂E(w(r))

∂w(r)
, (11)

where 0 ≤ α ≤ 1 is the learning rate, 0 ≤ m ≤ 1 is the momen-
tum parameter, and w(r) represents the vector of weights after r-th
iteration of update. The convergence condition is that the validation
error has no obvious change after R iterations.

We use back-propagation through time (BPTT) algorithm [19,
20] to train the network. In the BLSTM hidden layer, BPTT is
applied to both forward and backward hidden nodes and back-
propagates layer by layer. Taking the error function derivatives
with respect to the output of the network as an example. For
v̂k
t = (v̂kt1, . . . , v̂

k
tj , . . . , v̂

k
tNappearance ) in k-th V̂, because the acti-

vation function used in the output layer is an identity function, we
have

v̂ktj =
∑
h

wohz
k
ht, (12)

where o is the index of the an output node, zkht is the activation of
a node in the hidden layer connected to the node o, and woh is the
weight associated with this connection. By applying the chain rule
for partial derivatives, we can obtain

∂Ekt

∂woh
=
∑Nappearance

j=1

∂Ekt

∂v̂ktj

∂v̂ktj
∂woh

, (13)

and according to Eq. (10) and (12), we can derive

∂Ekt

∂woh
=
∑Nappearance

j=1
(v̂ktj − vktj)zkht, (14)

∂Ek

∂woh
=
∑T

t=1

∂Ekt

∂woh
. (15)

5. EXPERIMENTS

5.1. Experimental setup
Our experiments were carried out on the A/V database with 593 En-
glish utterances spoken by a female in a neutral style. The transcrip-
tion is from ARCTIC-part A [21], which is designed for good pho-
netic coverage and contextual diversity. The frame rate of the video
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Table 1. The objective experimental results for networks with different hidden layers and numbers of nodes.
Node 128 256 512

TP RMSE RMSE RMSE CORR RMSE RMSE RMSE CORR RMSE RMSE RMSE CORR(shape) (texture) (appearance) (shape) (texture) (appearance) (shape) (texture) (appearance)
BBB 1.133 6.307 157.271 0.642 1.146 6.393 160.279 0.625 1.158 6.411 161.024 0.621
BBF 1.123 6.309 157.378 0.643 1.725 7.902 213.273 0.002 1.726 7.904 213.333 -0.016
BFB 1.142 6.376 159.747 0.630 1.155 6.433 161.658 0.622 1.147 6.380 159.827 0.632
BFF 1.151 6.379 159.773 0.631 1.148 6.427 161.544 0.626 1.726 7.903 213.295 -0.009
FBB 1.122 6.286 156.502 0.647 1.137 6.320 157.725 0.641 1.133 6.314 157.549 0.643
FBF 1.129 6.327 158.061 0.640 1.726 7.903 213.312 -0.021 1.725 7.899 213.153 0.032
FFB 1.148 6.380 160.007 0.630 1.141 6.385 158.682 0.638 1.528 7.666 204.823 0.185
FFF 1.726 7.905 213.354 -0.032 1.394 7.124 186.012 0.430 1.726 7.909 213.486 -0.014

files is 25 fps and all together 81974 face images with pixel resolu-
tion 720 × 576 are collected. We divided the database into 3 parts
randomly, 80% for training, 10% for validation and 10% for testing.
We randomly selected 20000 images from the training set for lower-
face AAM training. We chose top 66 shape and 100 texture princi-
pal components containing about 99% and 87% cumulative energy
contents, respectively. The final dimension of the visual appearance
vector (vk

t ) is 87. We found that the use of more principal com-
ponents will not lead to further performance improvement. In the
neural network training, we set the learning rate and the momentum
to 1e-6 and 0.9, respectively and the weights were initialized with a
Gaussian random distribution.

We conducted objective evaluations by directly comparing the
predicted visual AAM features with the ground truth. Four objective
metrics are used, defined as follows [8]:

RMSE(shape) =

∑Mtest
k=1

∑Tk
t=1

√∥∥ ŝkt − skt
∥∥ 2
/Nshape∑Mtest

k=1 Tk

, (16)

RMSE(texture) =

∑Mtest
k=1

∑Tk
t=1

√∥∥ t̂kt − tkt
∥∥ 2
/Ntexture∑Mtest

k=1 Tk

, (17)

RMSE(appearace) =

∑Mtest
k=1

∑Tk
t=1

√∥∥ v̂k
t − vk

t

∥∥ 2
/Nappearance∑Mtest

k=1 Tk

,

(18)

CORR =

∑Mtest
k=1

∑Tk
t=1 corr(v̂

k
t ,v

k
t )∑Mtest

k=1 Tk

, (19)

where corr(v̂k
t ,v

k
t ) denotes the correlation coefficient and ŝkt and

t̂kt are shape/texture parameters reconstructed from v̂k
t . Note that

lower RMSE and higher CORR correspond to better performance.

5.2. Different network topologies
We tested the performance of network topologies with different hid-
den layers (F–feed forward, B–BLSTM) and numbers of nodes, as
described in Table 2. Results show that the 3-hidden-layer structures
outperform the 1- and 2-hidden layer structures in general. The re-
sults for all tested 3-hidden-layer structures are summarized in Table
1. We interestingly found that, in terms of the four objective metrics,
the best network topology is two BLSTM layers sitting on top of one
feed-forward layer (FBB) and FBB with 128 nodes per layer obtains
the best performance.

5.3. Deep BLSTM vs. HMM
We also compared our deep BSLTM approach with our previous
HMM-based approach [8]. In the HMM-based system, five-state,
left-to-right HMM phone models were used, where each state was
modeled by a single Gaussian with diagonal covariance. The HMM-
s were first trained in the maximum likelihood (ML) sense and then

Table 2. Network topologies tested in our experiments.

Hidden layer F, B, BB, BF, FB, FF, BBB, BBF, BFB
BFF, FBB, FBF, FFB and FFF

Node 128, 256 and 512

Table 3. Comparison between deep BLSTM and HMM.

Comparison RMSE RMSE RMSE CORR(shape) (texture) (appearance)
HMM 1.223 6.602 167.540 0.582

deep BLSTM 1.122 6.286 156.502 0.647

refined by the minimum generation error (MGE) training. The re-
sults for FBB128 deep BLSTM and HMM are shown in Table 3. We
can clearly see that the deep BLSTM approach outperforms the H-
MM approach by a large margin in terms of the 4 objective metrics.
Please note that the computational cost of training BLSTM-based
talking head is much higher that of HMM-based one.

5.4. Subjective evaluation
For subjective evaluation, we chose 10 sequences of labels random-
ly from the test set and rendered the deep BLSTM-based and the
HMM-based talking head videos, respectively. For each test se-
quence, the two talking head videos were played side-by-side ran-
domly with original speech. A group of 20 subjects were asked to
perform an A/B preference test according to the naturalness. The
percentage preference is shown in Fig. 4. We can clearly see that
the deep BLSTM-based talking head is significantly preferred to the
HMM-based one. Most subjects prefer the BLSTM-based talking
head because its lip movement is more smooth than the HMM-based
one. Some video clips of the synthesized taking head can be found
from [22].

61.5%
Deep BLSTM

23.0%
HMM

15.5%
Neutral

Fig. 4. The percentage preference of the deep BLSTM-based and
HMM-based photo-real talking heads.

6. CONCLUSION

In this paper, we propose to use deep BLSTM to model the tem-
poral and long-range dependencies of audio/visual stereo data for a
photo-real talking head animation. Our study shows that the best
network is two BLSTM layers sitting on top of one feed-forward
layer on our datasets. Compared with our previous HMM-based ap-
proach, the proposed deep BLSTM shows superior performances in
both objective and subjective tests. In future work, we plan to take
richer information into account for the contextual label (besides sim-
ple phonetic information). We believe the deep BSLTM approach is
promising in achieving expressiveness in talking head animation.
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