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ABSTRACT

The current state of the art TTS synthesis can produce syn-
thesized speech with highly decent quality if rich segmental
and suprasegmental information are given. However, some
suprasegmental features, e.g., Tone and Break (TOBI), are
time consuming due to being manually labeled with a high in-
consistency among different annotators. In this paper, we in-
vestigate the use of word embedding, which represents word
with low dimensional continuous-valued vector and being as-
sumed to carry a certain syntactic and semantic information,
for bidirectional long short term memory (BLSTM), recurren-
t neural network (RNN) based TTS synthesis. Experimental
results show that word embedding can significantly improve
the performance of BLSTM-RNN based TTS synthesis with-
out using features of TOBI and Part of Speech (POS).

Index Terms— Speech synthesis, TTS, BLSTM, RNN,
word embedding

1. INTRODUCTION

With decades of development, the state-of-the-art TTS syn-
thesis systems now can achieve good performance, but all of
these systems highly rely on rich manually labeled features.
Labeling such features is expensive and relying on such fea-
tures limits the application of TTS synthesis system since in
some cases such as on-line voice-to-voice translation, it is im-
possible to manually label such rich features. Although some
features such as POS can be predicted well by using machine
learning method, the prediction of some key features such as
the tone and break index (TOBI) are still far from accurate s-
ince the limited training corpus. Considering only a few of
text-to-speech training corpora are labeled with TOBI fea-
tures, it is worthwhile to develop the TTS synthesis system
that does not rely on such features and can be trained directly
on text-to-speech corpus.

Recently, neural network (NN) based TTS synthesis sys-
tems have shown fairly good performance. [1] proposes a
TTS synthesis system using deep neural network (DNN) and
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shows that this DNN based system outperforms the con-
ventional hidden Markov model (HMM) based system. [2]
further explores the usage of DNN in TTS and also proves
DNN’s superior performance. Bidirectional long short term
memory (BLSTM) recurrent neural network (RNN) [3, 4, 5]
which can make use of features of a long context is intro-
duced to replace DNN in [6, 7]. The corresponding results
show that RNN based TTS performs better than both HMM
and DNN. Despite of its success in NN based systems, one
specific advantage of neural network is that neural network
models trained on different corpora or tasks can share part of
their layers. This makes neural network model easy to take
advantage of big data by using some parts of layers trained
on other tasks which have large training data. With the help
of big data, neural network can achieve comparably good
performance without using rich manually labeled features.
One typical and most commonly used shared part of layers is
word embedding.

Word embedding is a low dimension continuous-valued
vector that are used to represent word. It becomes popular
in recent years with the success of neural network language
model. In recent publications about word embedding, [8, 9]
achieve word embedding by training a neural network lan-
guage model . [10, 11, 12, 13, 14] get word embedding by
training a neural network model to predict current word giv-
en the preceding and succeeding words. One common point
of these works is that they all make use of large unlabeled
text data. [14] are trained on corpus with 10 billion word-
s and the sizes of the other works’ training corpora are all
over 10 million words. With the help of word embedding
trained on big data, [12] reports their neural network models
with only few basic features achieve comparably good per-
formance as state-of-the-art methods using rich manually la-
beled features in dealing with 4 basic natural language pro-
cessing tasks. [15] also proves the help of word embedding
while their task is predicting the phrase-break position in sen-
tences for TTS synthesis. [16] has tested DNN based TTS
system with vector space representation and its result is not
very positive. However, it should be noted that vector space
representation is a byproduct of singular value decomposition
of a matrix of an information retrieval task [17], while word
embedding discussed in this paper are all trained using neural
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Fig. 1. Structure of neural network language model.

network models on a much larger corpus.
In this paper, we alter the BLSTM-RNN based TTS syn-

thesis system proposed in [7] to make use of word embedding.
The alteration for using word embedding is discussed in Sec-
tion 2. Four types of published word embeddings [9, 10, 12,
14] are tested. Experimental results and analysis are present-
ed in Section 3 followed by conclusions.

2. BLSTM-RNN BASED TTS SYNTHESIS
WITH WORD EMBEDDING

2.1. BLSTM-RNN based TTS synthesis system

The schematic diagram of BLSTM-RNN based TTS synthe-
sis system is shown in Fig 2.
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Fig. 2. BLSTM-RNN based TTS synthesis system.

In this system, a text sentence is given as input and the
output is the speech of this sentence. The sentence is first
converted to a sequence of input features I1,I2,. . . ,IT where
It denotes the t-th input feature at frame t. Each input fea-
ture It is composed of the binary features for categorical con-
texts, e.g. phone labels, POS labels of the word, and TOBI la-
bels, and numerical features for the numerical contexts, e.g.,
the number of words in the phrase or the position of current
frame in the current phone. Then, input features are mapped
to output features O1,O2,. . . ,OT by a trained BLSTM-RNN
where Ot denotes the t-th output feature at frame t. The
output features are composed of fundamental frequency (F0),
voiced/unvoiced flag and line spectral pairs (LSP). Finally, a
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Fig. 3. Structure of BLSTM-RNN with word embedding.

waveform synthesis module is used to transform the output
features to speech waveform.

In the training phase, input features and output features
of training corpus are time-aligned frame-by-frame by well-
trained HMM [18]. BLSTM-RNN is then trained on a se-
quence of input and output feature vector pairs which can be
regarded as a data set of a typical sequence labeling task.

2.2. Achieving word embedding

Word embedding can be achieved by training a neural net-
work language model (NNLM) to predict current word’s
probability distribution given previous words. Fig 1 illus-
trates the structure of a typical NNLM [8]. In this sample,
2 previous words are given as the input and the output is
current word. All words are represented with one hot repre-
sentation whose dimension is |V | where V is the vocabulary.
Each input word vector wx is mapped to C(wx) which has
a much lower dimension m by multiplying a weight matrix
W (m × |V |): C(wx) = Wwx. As the training of other
weights in neural network, W is also initialized with ran-
dom values and updated by back-propagation algorithm. The
main difference between training W and training an addi-
tional layer is that all input words share one W . When the
training of this NNLM is finished, word embedding of wx

is also achieved which is C(wx). Once word embeddings
are trained, they can be easily applied to other task’s neural
network model by just substituting W with the well trained
W .

In our experiments, four types of published well-trained
word embeddings are involved. They all achieve word em-
beddings by training a neural network model on unlabeled
text and their usages of word embeddings are the same as that
illustrated in Fig 1: mapping input word to a lower dimension
word embedding by W and updating W during training the
neural network model. More details about these word embed-
dings and their differences are presented in Section 3.

2.3. Using word embedding

The usage of word embedding in BLSTM-RNN for TTS syn-
thesis is shown in Fig 3. Here I

(1)
t is current word’s one hot

representation in frame t and I
(2)
t is the all features except
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for TOBI and POS related features. Ot is the output feature
vector of frame t. As in NNLM, wt is mapped to its word
embedding C(wt) by multiplying matrix W , then C(wt) and
I
(2)
t are cascaded as the input of BLSTM-RNN. In practice,

the role of W is implemented by a dictionary D that records
word embedding of each word (D[wt] = Wwt). The dictio-
nary can be kept fixed or be updated by the back-propagated
errors of BLSTM-RNN’s input layer during the training pro-
cess. The update algorithm is shown in Algorithm 1, where

Algorithm 1 update algorithm
1: for i in 1...m do
2: D[wt]i= D[wt]i-learningrate ∗ bkerrori
3: end for

D[wt] returns word wt’s word embedding, D[wt]i is the i’s
dimension of this word embedding and bkerrori is the back-
propagated error of i’s node in the input layer.

The update of D is actually independent with the update
of BLSTM-RNN. It is not required that D is updated in every
training epoch, thus various of update strategies can be used
such as updating D every n epochs. In our approach, we first
fix D and update RNN until no best validation score appears,
then fix RNN and update D. These two steps are repeated un-
til no improvement is observed. This strategy lead to a better
performance than simply updating D in every epoch.

BLSTM-RNN has been proven to be capable of capturing
non-local information in a sequence [3, 4, 5]. Therefore, in
our approach, only current word’s word embedding is added
to the input features and the latent dependencies of these ad-
ditional features along an utterance are expected to be learned
by BLSTM-RNN. The system in our experiments is altered on
CURRENT, a machine learning library for RNN which uses
GPU to accelerate the computations [19].

3. EXPERIMENTS AND RESULTS

3.1. Experimental setup

A corpus of a female, American English, native speaker is
used in all experiments. The corpus consists of 5514 utter-
ances (about 5 hours). 5050 of these utterances are used for
training, 264 are used for validation and 200 are used for test-
ing. Speech data are sampled at 16 kHz, windowed by a 25
ms window, and shifted every 5 ms.

A group of systems are designed to test the performance
of BLSTM-RNN based TTS synthesis system with different
word embeddings. The basic information of involved word
embeddings and their sources are listed in Table 1, where the
unit of training corpus’s size is word and RCV1 represents the
Reuters Corpus Volume 1 news set. WR1 to WR6 are trained
by published works and are available to download from Inter-
net. For each word embedding, the detailed training method
can be found in corresponding work listed in Ref column and

Table 1. Tested word embeddings.

Alias Dim Vocab Size Train Corpus Ref Src
WR1 80 82K Broadcast

news (400M)
[9] [20]

WR2 25 269K RCV1 (37M) [11] [21]
WR3 50 269K RCV1 (37M) [11] [21]
WR4 100 269K RCV1 (37M) [11] [21]
WR5 50 130K RCV1+Wiki

(221M+631M)
[12] [22]

WR6 300 3M Google news
(10B)

[14] [23]

the URL to download can be found in Src column. Note that
WR2 to WR4 are trained with same method and corpus but
with different dimension. They are used to explore the effect
of dimension of word embeddings.

All of these systems share the same output features and
neural network structure. The output features of all these sys-
tems consist of voiced/unvoiced flag and log F0, 40 LSP and
gain, totally 1+1+40+1=43 dimensions. The neural network
structure of all systems is 4 hidden layers with 512 nodes per
layer, where the structure of bottom 2 hidden layers is feed-
forward while the structure of top 2 hidden layers is BLST-
M. This structure follows the configuration in [7] and it al-
so achieves the best performance compared with other struc-
tures, i.e., different layers and nodes per layer combination,
according to our experiments.

Before training, log F0 values in unvoiced states are in-
terpolated to keep the continuity of acoustic features within
a sentence. Both input and output features are normalized to
have zero-mean and unit-variance. The weights of RNN are
initialized randomly and are trained using mini-batch back-
propagation algorithm with constant learning rate.

3.2. Evaluation results and analysis

Each system’s performance is assessed objectively by evaluat-
ing the distortion between predicted output features and actual
output features in the test set. The objective measures include
the root mean squared error (RMSE) of F0, voiced/unvoiced
(V/U) error rate and log spectral distance (LSD) of LSP. Sub-
jective measure is also used as an additional evaluation.

There are four types of BLSTM-RNN based TTS system-
s with different input features. We split all possible input
features into three subsets:I(1), I(2) and I(3), where I(1) is
word embedding, I(2) contains phoneme identity, the posi-
tion of phoneme, the position of syllable and word in phrase
and sentence, the length of syllable and word and state index,
involving all input features of [7] except those manually la-
beled features, i.e., POS and TOBI, and I(3) is composed of
POS and TOBI. These four types of systems are configured
as,
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1) rnn: baseline system, using input features I(2);
2) rnn WR#: using input features I(1) + I(2) (WR# is the

alias of involved word embedding listed in Table1);
3) rnn upper bound: upper bound system, using input

features I(2) + I(3), in which I(3) are manually labeled for
both training an testing sets;

4) rnn ub WR1: using input features I(1) +I(2) + I(3).
Table 2 presents objective evaluation results of these sys-

tems. All systems making use of word embedding achieve an
improvement of the baseline system in F0 RMSE and LSD,
half of these systems get improvement in V/U Error. rnn WR1
achieves the greatest improvement which is fairly notable al-
though the performance still falls behind rnn upper bound. It
shows that the best performed word embedding can achieve
over 50% of the prosody improvement brought over by the
manually labeled features, compared with the one trained
with baseline features (rnn) and with state-of-the-art fea-
tures (rnn upper bound). Note that not all word embeddings
get a notable improvement and some even get a worse per-
formance in V/U Error. The training corpus, corpus’s size
and training neural network’s structure of word embedding
may attribute to this discrepancy. Therefore, exploring the
effect of these factors is one of future directions and it is
expected that the performance can be further improved with
fine tuned word embeddings. Besides, rnn WR2 to rnn WR4
show that the dimension of word embedding is not a very im-
portant factor. rnn WR3 and rnn WR5 show that, in out task,
the training corpus size may not so important as [14] men-
tioned. While word embedding brings improvement to rnn,
rnn ub WR1 do not show a further improvement compared
with rnn upper bound. It is conjectured that word embedding
can provide part of information involved in manually labeled
features, so it fails to provide further help when those features
are used.

Table 2. Objective evaluation results of tested systems.

Alias F0 RMSE
(HZ)

V/U Error
(rate)

LSD
(dB)

rnn 17.53 2.25% 3.69
rnn WR1 16.04 2.22% 3.60
rnn WR2 17.15 2.22% 3.66
rnn WR3 16.79 2.32% 3.63
rnn WR4 17.24 2.30% 3.63
rnn WR5 16.75 2.34% 3.63
rnn WR6 17.49 2.00% 3.66
rnn upper bound 14.85 1.81% 3.63
rnn ub WR1 14.93 1.92% 3.61

In experiments above, weights of word embedding are
fixed during the training process. In fact, weights can be
tuned following Algorithm 1. Table 3 shows the result of rn-
n WR1 tuned which tunes word embedding during training.
Tuning word embedding during training leads to a further im-

Table 3. Performance of tuning word embedding.

Alias F0 RMSE
(HZ)

V/U Error
(rate)

LSD
(dB)

rnn WR1 16.04 2.22% 3.60
rnn WR1 tuned 16.02 2.18% 3.58

provement in all three measures, but not notable which is con-
sistent with [12, 15].

In subjective evaluation experiments, two AB preference
tests are conducted through Amazon Mechanical Turk [24].
In each test, 50 randomly selected texts from test set are syn-
thesized by two tested systems to generate a set of utterance
pairs. For each pair, 20 native English speakers are asked
to choose which one of the synthesized utterance is better or
choose no preference. The proportion of these choices are
averaged and regarded as the criterion of current AB test. Ta-
ble 4 shows the results.

Table 4. Results of two AB tests where neutral denotes “no
preference” and p is the t-test p-value of each test. Both re-
sults are statistically significant.

rnn WR1 tuned rnn neutral p-value
38% 29% 33% < 10−3

rnn WR1 tuned rnn upper bound neutral p-value
30% 36% 34% < 10−2

In the result of AB test between rnn WR1 tuned and rnn,
participants on average prefer more utterances (38%) synthe-
sized by rnn WR1 tuned than the baseline system rnn (29%).
The second test shows that rnn WR1 tuned (30%) falls behind
rnn upperbound (36%). (Some samples of converted utter-
ances are given on: http://research.microsoft.
com/en-us/projects/dnntts/default.aspx)
The subjective results show that word embedding can sig-
nificantly improve the performance of the baseline system,
which doesn’t use TOBI and POS as input features, although
it still has a gap to the upper bound system, which uses manu-
ally labeled POS and TOBI as input features for both training
and testing sets.

4. CONCLUSIONS

In this paper, we investigate the use of word embedding for
BLSTM-RNN based TTS synthesis system. Four different
kinds of published word embeddings are tested. Experimen-
tal results show that word embedding can notably improve the
performance of BLSTM-RNN based TTS synthesis system
without using manually labeled features. The improvement
varies a lot with different word embeddings trained on differ-
ent corpora and tasks. It is expected that using a fine tuned
word embedding can achieve a further improvement.
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Jan ”Honza” Cernocký, and Sanjeev Khudanpur, “Re-
current neural network based language model,” in
INTERSPEECH, Makuhari, Chiba, Japan, September
2010, pp. 1045–1048.

[10] Andriy Mnih and Geoffrey Hinton, “Three new graph-
ical models for statistical language modelling,” in Pro-
ceedings of the 24th international conference on Ma-
chine learning, Corvallis, Oregon, USA, June 2007, pp.
641–648.

[11] Joseph Turian, Lev Ratinov, and Yoshua Bengio, “Word
representations: A simple and general method for semi-
supervised learning,” in ACL, Uppsala, Sweden, July
2010, pp. 384–394.

[12] Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa, “Natural

language processing (almost) from scratch,” The Jour-
nal of Machine Learning Research, vol. 12, pp. 2493–
2537, 2011.

[13] Eric H. Huang, Richard Socher, Christopher D. Man-
ning, and Andrew Y. Ng, “Improving word representa-
tions via global context and multiple word prototypes,”
in ACL, Jeju Island, Korea, July 2012, pp. 873–882.

[14] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean, “Efficient estimation of word representations in
vector space,” CoRR, January 2013.

[15] O. Watts, S. Gangireddy, J. Yamagishi, S. King, S. Re-
nals, A. Stan, and M. Giurgiu, “Neural net word repre-
sentations for phrase-break prediction without a part of
speech tagger,” in ICASSP, Florence, Italy, May 2014,
pp. 2599–2603.

[16] Heng Lu, Simon King, and Oliver Watts, “Combining
a vector space representation of linguistic context with
a deep neural network for text-to-speech synthesis,” in
8th ISCA Speech Synthesis Workshop, Barcelona Spain,
August 2013, pp. 281–285.

[17] Oliver Watts, “Unsupervised learning for text-to-speech
synthesis,” Ph.d. dissertation, 2013.

[18] Keiichi Tokuda, Takayoshi Yoshimura, Takashi Ma-
suko, Takao Kobayashi, and Tadashi Kitamura,
“Speech parameter generation algorithms for HMM-
based speech synthesis,” in ICASSP, Istanbul, Turkey,
June 2000, vol. 3, pp. 1315–1318.

[19] Weninger Felix and Geiger Jrgen, “Current,” http:
//sourceforge.net/projects/currennt/.

[20] Tomas Mikolov, “Rnnlm,” http://rnnlm.org/.

[21] Joseph Turian, Lev Ratinov, and Yoshua Bengio, “Word
representations for NLP,” http://metaoptimize.
com/projects/wordreprs/.

[22] Ronan Colloberte, “Senna,” http://ml.
nec-labs.com/senna/.

[23] Tomas Mikolov and etc, “word2vec,” https://
code.google.com/p/word2vec/.

[24] “Turk,” https://www.mturk.com/.

4883


