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ABSTRACT correlated to the over-smoothing effect [9]. This method enables
This paper presents a novel training algorithm for Gaussian Mixtur¢he use of the computationally efficient parameter generation algo-
Model (GMM)-based Voice Conversion (VC). One of the advantagesithm [15] for generating the parameter trajectory while keeping
of GMM-based VC is computationally efficient conversion process-ts GV close to natural one. Hwareg al. [16] proposed the train-
ing enabling to achieve real-time VC applications. On the otheing algorithm for GMM-based VC considering the GV. Although
hand, the quality of the converted speech is still significantly worset significantly improves the quality of the converted speech while
than that of natural speech. In order to address this problem whilkeeping the computationally efficient conversion, there still remain
preserving the computationally efficient conversion processing, theome problems to be solved: 1) it suffers from the inconsistent opti-
proposed training method enables 1) to use a consistent optimizasization criteria between training and conversion, and 2) the GV is
tion criterion between training and conversion and 2) to compensatgill insufficient to detect the over-smoothing effect.
a Modulation Spectrum (MS) of the converted parameter trajectory  Recently, Takamichét al. [17] have found that a Modulation
as a feature sensitively correlated with over-smoothing effects causpectrum (MS) of the generated parameter trajectory is more sen-
ing quality degradation of the converted speech. The experimersitively correlated to the over-smoothing effect than the GV. They
tal results demonstrate that the proposed algorithm yields significamfave also reported that the MS can be regarded as an extension of
improvements in term of both the converted speech quality and ththe GV and the synthetic speech quality is significantly improved by
conversion accuracy for speaker individuality compared to the basiconsidering the MS rather than the GV in HMM-based speech syn-

training algorithm. thesis. It is expected that a better consistent optimization criterion
Index Terms— GMM-based voice conversion, over-smoothing, Will be designed by incorporating a criterion on the MS.
modulation spectrum, training algorithm This paper proposes an MS-constrained trajectory training al-
1. INTRODUCTION gorithm as a novel training algorithm for GMM-based VC. After

L . . . . ) implementing the trajectory training, we further integrate the MS
Statistical Voice Conversion (VC) is an effective technique for mod-jnto the trajectory training. The proposed training algorithm gives a
ifying speech parameters to convert non-linguistic information whileynified framework for both training and conversion which provides
keeping linguistic information unchanged, and making it possible tgoth a consistent optimization criterion and a closed form solution
enhance various speech-based systems [1, 2, 3, 4]. Recently, sevatglparameter conversion considering the MS. The experimental re-
state-of-the-art methods have been applied to VC [S, 6, 7], but Gaugyits demonstrate that the proposed algorithm yields significant im-

sian Mixture Model (GMM)-based VC [8, 9] has still gained popu- provements in term of both speech quality and speaker individuality.
larity thanks to its computationally efficient conversion processing.

This framework models the joint probability density of the static and 2. BASIC FRAMEWORK
dynamic features of speech parameters from both source and target . GMM Training [8]

voices using a GMM. The conversion stage performs the MaximunA
Likelihood (ML)-based trajectory conversion [9] using the condi-
tional probability density analytically derived from the GMM and an
additional constraint between the static and dynamic features. In th
method, the converted parameter trajectories can be determined aln_,—< [X t }
alytically, also enabling the computationally efficient real-time con- Y.
version processing [10, 11]. However, they suffer from the over-

joint probability density function of speech parameters of the
source and target speakers is modeled with a GMM using a parallel
gata as follows:

_ M Xi | (xy) w(X)Y)
A= Z Chn./\/’ Yf oy 1 7zm ) (1)
m=1 .

smoothing effect, which makes the converted speech sound muffled. covy [t xyy | BE = )
There are various attempts at addressing the over-smoothing mo T el mo T m(YX) sry) e

issue in statistical parametric speech synthesis. &eal. [12] here X, andy th dt t feat t tf
proposed the trajectory training method for Hidden Markov ModelWere-A: and¥'. are the source and target leature vectors at frame
{, respectively.Y, is given by2D-dimensional joint static and dy-

(HMM)-based speech synthesis [13] by imposing the constraint be= "=~ - T )
tween the static and dynamic features in synthesis on the training@mic feature VeCtOfs{vyt Ay, } » Wherey, is represented as a
criterion. The use of a consistent optimization criterion betweenD-dimensional vector]y; (1), --- ,y: (D)]". The source feature
training and synthesis enables to effectively optimize the trainedector is also given by the same form in this pap¥€i(-; u, ) de-
model for synthesis. Toda and Young [14] has further incorporatediotes the Gaussian distribution with a mean vegi@and a covari-

an additional criterion on Global Variance (GV) into the optimiza- ance matrixX. The total number of mixture componentshis. X is

tion criterion, where the GV is well known as a feature sensitivelya GMM parameter set consisting of the mixture-component weight
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am, the mean vectop>>Y) and the covariance matrix") of  3.3. Parameter Conversion

- i (X,Y) i _ . . . .
them-th mixture componentu,,," ’ consists of the source and tar- e pasic parameter conversion process is performed as described

get mean vectorg") andu()”). =Y consists of the source and  in Section 2.2. The converted parameter sequgngds equivalent
target covariance matriceS s ) and={} ¥ and cross-covariance to that determined by maximizingi,, under the constrainy” =
matrices, X% %) and (XY, where they are diagonal matrices in Wy. Therefore,L,, is also regarded as the objective function for
this paper. The GMM parameters are estimated by maximizing theonversion although the constraint needs to be additionally used.
joint probability density given by Eq. (1).

3.4. Problems
2.2. Parameter Conversion [9] There is inconsistency of the optimization criterion between the
Given theT-frame feature sequenc® = [X,--- ,X}]T ofthe  training and the conversion; i.e., the explicit relationship between
source speaker’s voice, the converted parameter seq@gpce=  the static and dynamic features given By = Wy is ignored in
(g, 7:’3;]T is analytically determined by maximizing the con- training while it is considered in conversion. Therefore, the trained
ditional probability of the target feature vectt given X undera ~ Model parameters are not optimum for conversion.
constrainty’ = Wy as follows: The GV likelihood is used as a penalty term to alleviate the over-
_ . N smoothness. Although it can improve the quality of the converted
Ym = arg;nax P(Wy| X, 1w, A) ® speech, the improved quality is still far from the natural one.
-1
= R;lrwm = (WTD;;W) W'D, Ey, (4) 4. IMPLEMENTATION OF TRAJECTORY TRAINING
whereW is a2DT-by-DT weight matrix to calculate the dynamic In [19], the trajectory training has been implemented for the joint
features [15).7ir = [rha,--- , 7] | is the sub-optimum mixture probability density modeling in GMM-based voice conversion. In
component sequence determined by maximiZihgn|X,\), and  this section, we present yet another implementation by reformulating
the other parameters are given by the conditional probability density function in Eqg. (3) by imposing
. ) (vix)~1 vix-1T the explicit relationship between the static and dynamic features.
D, = diag,p {Eml v Xy ] v (9)
B, - [ (},‘)l()r o (AY‘XT)T] T ®) 4.1. Objective Function for Training and Conversion
e e The objective function for the trajectory training is written as:
pd = AnXe+bs @ 5 o pt
M ,t Mkt s Lyj =P (y|X,m,A) =N (y;ym,Rm) 14)
As = 255”255”‘17 (8)  The mean vectog,;, is given by Eq. (4) and the inter-frame cor-
' 1 relation is effectively modeled by the temporal covariance matrix
b = ) _n0Xexx)"t o0 9 a C it
o = Mg, " " My, s 9) R_". In training, the GMM parameters are updated by maximizing
I oY) E(AYX)E(AXX)*lz(AXY) (10) L. In conversion, the basic conversion process described in Sec-

o ) . tion 2.2 is performed. Note that the mean vedjgy, is equivalent
The notationdiag,, denotes the construction of a block diagonal g the generated parameter sequence in the basic conversion process.
matrix that has the D-by-2D diagonal elements. The converted pa- Therefore, Li,; can be regarded as the objective function not only
rameter sequenag;, is efficiently calculated sequence by sequencesoy training but also for conversion.
using the Cholesky decomposition [15], or recursively calculated

frame by frame using the low-delay conversion algorithm [18]. L
4.2. Estimation of Model Parameters

3. CONVENTIONAL GV-CONSTRAINED TRAINING Here, leté, = [AT,---,AL]" & = [bl.---.b5]", and

3.1. Global Variance (GV) [9] . (v]x)-1 vix)-1 7T .
The GV (y) = [v(1),--- ,v (D)]" is defined as the second order = [El SRR ] be the joint parameters of
moment of the trajectory, and itsd-th component is given as A, b, andziﬁny‘xr1 over all mixture components, respectively.
T T 2 To optimize these model parameters for the objective function, we
v (d) = %Z <yt (d) — 1 yr (d)) (11)  employ the steepest descent algorittas follows:
t=1 =1 £X+1) _ X‘) +a % . (15)
3.2. Objective Function for GV-Constrained Training [16] Ea len=e)

wherec is a learning rate, andis an iteration index£, and>™*

(Y1X)y
A part of the GMM parameter Se{A.., bm, 3 ™} is updated are also optimized in the same manner. The gradients are given by:

by maximizing the following objective functiofis, consisting of

the GMM and GV likelihoods: % = Shdiagh [DAW (v - 5,)XT]. 6)
Lo = P(WyX i X P (@) X, A X™7 @12 512

PO @)X, mAN) =N (0@):v@,),5), 13 S5 = SaDAW(y—95), (17)
wherew,, is a weight of the GV likelihoodY:, is a covariance matrix dlog z ) 1
of the GV, and), is a model parameter set of the GV. The GMM  ——°— = =S 1 diag, [W (R,’h1 + Do — ny>
and GV likelihoods are normalized by the ratio of the number of % 2
feature dimensions when, = 1.0. This training algorithm updates ~Ep (5 —y) W' =W (45, —y) E,Tn] ,(18)
the model parameters to make the GV of the converted parameter
sequence close to natural one. 1Closed form solutions also exist fér, andé,,.
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whereSy, =[Sy, , Smyp] ®I2pisa2DT-by2DM matrix,  and the gradients dbg L. are given as

S, is anM-dimensional vector of which the:-th component i 0108 Lins . . . .
whenm = 7; and otherwise are, andI.p indicates theD-by- e, S ndiag; {Dm WR;, smX ] ,  (26)
2D identity matrix. Blogz
In this paper, the traditional joint density training is firstly Tms = SuD;WR, s, 27
b

performed to estimate\. Then, the proposed algorithms up-

dates{¢,, &, X'} while keeping{wy., X, =)} constant. % =S diagyp [W Ry, s (Em — W,3,)] ,(28)
Note that the sub-optimum mixture component sequehcaever
changes in this setting. where
1T ' T , T1T
smo = st st s ] (29)
5. PROPOSED MODULATION sy = [s:(1), - ,se(d), -, 8 (D)}T, (30)
SPECTRUM-CONSTRAINED TRAJECTORY TRAINING @T R
. si(d) = 2f,(d)p” (s(y)—s(9)), (31)
5.1. Modulation Spectrum , T
Wh h Y h | i f th ft(d): [ft,d(o)v"'7ft,d(f)7"'vft,d(Ds_]-)} 7(32)
ereas the GV represents the temporal scaling of the parameter Fra(f) = Ragcoskt + Loy sinkt, (33)

trajectory as a scalar value in each feature dimension, the MS ex- - )
plicitly represents the temporal fluctuation as a vector [17]. In thisvhereR, s andly, s are calculated using theth dimensional com-

paper, the MSs (y) of the parameter sequengas defined as ponents ofg,;,.
T T T T
s(y) = [S 1) 8@, 8(D) ] ) (19) 5.4, parameter Conversion
s(d) = [s4(0), - ,8a(f), - ,5a (Di— 1)]T , (20) Itisunnecessary to consider the MS in parameter conversion because
the GMM parameters are optimized to make the MS of the converted
sa(f) = Ras+1Iay (21) P P

parameter sequence close to the natural one. Consequently, the basic
T ? T 2 parameter conversion algorithm is straightforwardly employed. If
(Z Yt (d) cos kt) + (Z Y (d) sin kt) +(22)  the proposed objective functidis; is used in the parameter con-
t=1 t=1 version, the converted parameter sequence to maximize it is equiv-
where2D; is a length of Discrete Fourier Transform (DFFR),= alent tog,;, which is analytically solved. Therefore, the proposed
—mnf/Ds is a modulation frequency, anfl; is the number of MS  framework can also be regarded as a unified framework between the
dimension in each feature dimension, whéde < D2 In this training and conversion process.
paper, the MS is calculated utterance by utterance. Because the MS involves the GV [17], the proposed MS-
constrained algorithm well recovers not only the MS but also the GV.
The GV is effectively recovered by the MS-constrained trajectory
5.2. Proposed Objective Function training (“MSTRJ") as observed in Fig. 1.

We integrate the MS compensation into the trajectory training. The 6. EXPERIMENTAL EVALUATION
objective function consists of both the trajectory likelihood and thes 1. Experimental Conditions

MS likelihood as follows: In our experiments, we prepared 2 English speakers (rms and slt)

S A wsT D; .
Linstsj = P (y| X, 1, A) P (s () | X, 70, A, A)“T/P5 . (23) iy the CMU ARCTIC database [22]. We used 50 sentences were
P(s(y)|X,m,2A\X) =N (5(y);38(Ts),2s), (24) selected for training and remaining 50 sentences for evaluation. We
where), is a model parameter set of the MS, &Bidis a D/, D-by- trained the slt-to-rms GMM. Speech signals were sampled at 16 kHz.
DD covariance matrix, andy is a weight of the MS Iikselihood. The shift length was set to 5 ms. The 1st-through-24th mel-cepstral
The trajectory likelihood and the MS likelihood are normalized by Coefficients were used as a spectral parameter and log-sea ]
the ratio of the number of feature dimensions when= 1. £-!is 2 band-aperiodicity [23, 24] were used as excitation parameters. The
represented a%pgl), @ 7P£D)] , wherep(® is D, D-by- STRAIGHT analysis-synthesis system [25] was employed for pa-

D matrix of which columns correspond qd). The MS likelihood

. . 0
works as a penalty term to the reduction of the temporal fluctuatior 10
of the converted parameter sequence. 3
SR
&107 ¢
—_
©
5.3. Estimation of Model Parameters TT: 102}
o
The model parameters are estimated in the same way as the trajectc ©
training. Let Ly, be the MS likelihood\ (s (y);s (§,5,),3:). @107+
The logarithm function oL .. is given by

- 5 10 15 20
10g Linstrj = 10g Lixj + ws 757 108 Lus, (25) feature index
Fig. 1. An example of the GVs of the converted mel-cepstral coeffi-

2Because lower modulation frequency components mainly affect speecHi€Nts (‘nat” indicates natural speech parameter trajectories).
perception [20, 21], only these components are considered in this paper.
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rameter extraction and waveform generation. The spectral param 12
ters and aperiodic components were converted through a 64-mixtu
GMM and a 16-mixture GMM, respectively. The log-scalggdwas 10
linearly converted. The DFT length to calculate MS was set to 204{ o
that covers the length of all training utterances. The conventione
GV-constrained training algorithm and the proposed algorithms wer
applied only to spectral component, and the likelihood weight
andws were set tol.0. According to the results of our preliminary
test, D’ was set taD, /2 (= 50 Hz).

We compared the following training algorithms:

—5.65

Log-scaled likelihoo

|
u
©
o

BASIC : Basic training [8]

GV : Conventional training considering the GV [16]

TRJ : Proposed trajectory training

MSTRJ : Proposed trajectory training considering the MS

Log-scaled likelihood (x0.0001)
R A
[o) [e0] ~ ~
w o [0, ] o

|
u
©

-6.0

BASIC GV TRJ MSTR) BASIC GV TR) MSTRJ
The trajectory likelihood and the MS likelihood for the natural Pa-Fig. 2. Trajectory likelihood forFig. 3. MS likelihood for the nat-
rameter trajectories of the evaluation data were firstly calculated tg,a natural parameter trajectoriesal parameter trajectories.
analyze the effect of the proposed algorithms. Then, the speech qual-
ity and the speaker individuality of the converted speech are eval:

. . 1. 1.

ated in the perceptual evaluation.
6.2. Objective Evaluation 0.8 0.8
Fig. 2 and Fig. 3 illustrate the trajectory likelihodd,; and the MS % %
likelihood L. for the natural parameter trajectories of the evalua- @ 0-6; Z 0.6
tion data, respectively. The trajectory likelihood is normalized by the § o
total number of frame§’. The trajectory training (“TRJ") slightly go a go 4
improves the MS likelihood as well as the trajectory likelihood com- g ™ o %
pared to the basic training (“BASIC”). This result shows that the > % &
proposed trajectory training models the parameter trajectories moi ¢ o 0.2
accurately than the basic training.

The MS-constrained trajectory training (“MSTRJ"”) well im- 00

proves the MS likelihood than the other algorithms. This result 0-0—gagic Gy —TR] MsSTR]
demonstrates that the MS of the converted parameter trajectory Is

well recovered by “MSTRJ.” It is observed that the trajectory likeli- =
hood is significantly degraded by the conventional GV—constraineg
training (“GV"). This is because “GV” uses the inconsistent criteriad
between training and conversion. This likelihood degradation is
reduced by “MSTRJ.”

BASIC GV TR] MSTRJ

ig. 4. Preference scores éig. 5. Preference scores on
peech quality with 95 % confspeaker individuality with 95 %
ence intervals. confidence intervals.

7. CONCLUSION

6.3. Subjective Evaluation This paper have proposed novel training algorithms for GMM-based
oice conversion in order to produce the high-quality speech while
reserving the computationally-efficient conversion algorithm. Tra-
itional GMM have been firstly reformulated as the trajectory model
lled “trajectory GMM,” then, the Modulation Spectrum (MS) have
een integrated into the trajectory training. The experimental results

In the evaluation of the speech quality, a preference test (AB tes
was conducted. We presented every pair of converted speech of 4
gorithms in a random order, and we forced listeners to select speed]
sample that sounds better quality. Similarity, XAB test on speake

:,:Sd g'i?::gﬁgé;ioenﬁ:gs grsusgrgt’ictihi\tae Zﬁgzz;iygtsi?szﬁwisf ee%/lelded the significant improvements in term of both the speech qual-
o .p . P . ) ' ity and the speaker individuality of the converted speech. As future
The results are illustrated in Fig. 4 and Fig. 5. Itis observed th%ork, we will implement the proposed algorithm for HMM-based

“TRJ” has higher scores than “BASIC” in term of both the speechgpeech synthesis, and apply the proposed algorithm to the voice con-
quality and the speaker individuality. On the other hand, the Score\§2rsion fg/r arbitra,ry speglfe)r/s [26p 2%' g

of “TRJ” are lower than “GV.” Therefore, the effect of the GV com- .
Acknowledgements: Part of this work was supported by JSPS

pensation on the converted speech is larger than that of the trajector; L
training. We can see that “MSTRJ” achieves the best scores th KENHI Grant Number26280060 and Grant-in-Aid for JSPS
iellows Grant Numbe®6 - 10354, and part of this work was ex-

others in term of the speech quality. This result demonstrates th d under ” . h -
the proposed MS-constrained trajectory training yields the best pefcuted under "JSPS Strategic Young Researcher Overseas Visits
Program for Accelerating Brain Circulation.”

formance among these training methods.

3We conducted the preliminary subjective test to investigate the quality-
wise effect of higher modulation frequency component of MS. As a result,
there is no significant difference in quality between analysis-synthesized
speech and the speech that MS over 50 Hz was cut.
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