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ABSTRACT
This paper presents a novel training algorithm for Gaussian Mixture
Model (GMM)-based Voice Conversion (VC). One of the advantages
of GMM-based VC is computationally efficient conversion process-
ing enabling to achieve real-time VC applications. On the other
hand, the quality of the converted speech is still significantly worse
than that of natural speech. In order to address this problem while
preserving the computationally efficient conversion processing, the
proposed training method enables 1) to use a consistent optimiza-
tion criterion between training and conversion and 2) to compensate
a Modulation Spectrum (MS) of the converted parameter trajectory
as a feature sensitively correlated with over-smoothing effects caus-
ing quality degradation of the converted speech. The experimen-
tal results demonstrate that the proposed algorithm yields significant
improvements in term of both the converted speech quality and the
conversion accuracy for speaker individuality compared to the basic
training algorithm.

Index Terms— GMM-based voice conversion, over-smoothing,
modulation spectrum, training algorithm

1. INTRODUCTION

Statistical Voice Conversion (VC) is an effective technique for mod-
ifying speech parameters to convert non-linguistic information while
keeping linguistic information unchanged, and making it possible to
enhance various speech-based systems [1, 2, 3, 4]. Recently, several
state-of-the-art methods have been applied to VC [5, 6, 7], but Gaus-
sian Mixture Model (GMM)-based VC [8, 9] has still gained popu-
larity thanks to its computationally efficient conversion processing.
This framework models the joint probability density of the static and
dynamic features of speech parameters from both source and target
voices using a GMM. The conversion stage performs the Maximum
Likelihood (ML)-based trajectory conversion [9] using the condi-
tional probability density analytically derived from the GMM and an
additional constraint between the static and dynamic features. In this
method, the converted parameter trajectories can be determined an-
alytically, also enabling the computationally efficient real-time con-
version processing [10, 11]. However, they suffer from the over-
smoothing effect, which makes the converted speech sound muffled.

There are various attempts at addressing the over-smoothing
issue in statistical parametric speech synthesis. Zenet al. [12]
proposed the trajectory training method for Hidden Markov Model
(HMM)-based speech synthesis [13] by imposing the constraint be-
tween the static and dynamic features in synthesis on the training
criterion. The use of a consistent optimization criterion between
training and synthesis enables to effectively optimize the trained
model for synthesis. Toda and Young [14] has further incorporated
an additional criterion on Global Variance (GV) into the optimiza-
tion criterion, where the GV is well known as a feature sensitively

correlated to the over-smoothing effect [9]. This method enables
the use of the computationally efficient parameter generation algo-
rithm [15] for generating the parameter trajectory while keeping
its GV close to natural one. Hwanget al. [16] proposed the train-
ing algorithm for GMM-based VC considering the GV. Although
it significantly improves the quality of the converted speech while
keeping the computationally efficient conversion, there still remain
some problems to be solved: 1) it suffers from the inconsistent opti-
mization criteria between training and conversion, and 2) the GV is
still insufficient to detect the over-smoothing effect.

Recently, Takamichiet al. [17] have found that a Modulation
Spectrum (MS) of the generated parameter trajectory is more sen-
sitively correlated to the over-smoothing effect than the GV. They
have also reported that the MS can be regarded as an extension of
the GV and the synthetic speech quality is significantly improved by
considering the MS rather than the GV in HMM-based speech syn-
thesis. It is expected that a better consistent optimization criterion
will be designed by incorporating a criterion on the MS.

This paper proposes an MS-constrained trajectory training al-
gorithm as a novel training algorithm for GMM-based VC. After
implementing the trajectory training, we further integrate the MS
into the trajectory training. The proposed training algorithm gives a
unified framework for both training and conversion which provides
both a consistent optimization criterion and a closed form solution
for parameter conversion considering the MS. The experimental re-
sults demonstrate that the proposed algorithm yields significant im-
provements in term of both speech quality and speaker individuality.

2. BASIC FRAMEWORK
2.1. GMM Training [8]

A joint probability density function of speech parameters of the
source and target speakers is modeled with a GMM using a parallel
data as follows:
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whereXt andY t are the source and target feature vectors at frame
t, respectively.Y t is given by2D-dimensional joint static and dy-

namic feature vectors,
[
y⊤
t ,∆y⊤

t

]⊤
, whereyt is represented as a

D-dimensional vector,[yt (1) , · · · , yt (D)]⊤. The source feature
vector is also given by the same form in this paper.N (·;µ,Σ) de-
notes the Gaussian distribution with a mean vectorµ and a covari-
ance matrixΣ. The total number of mixture components isM . λ is
a GMM parameter set consisting of the mixture-component weight
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αm, the mean vectorµ(X,Y )
m and the covariance matrixΣ(X,Y )

m of
them-th mixture component.µ(X,Y )

m consists of the source and tar-
get mean vectors,µ(X)

m andµ(Y )
m . Σ(X,Y )

m consists of the source and
target covariance matrices,Σ

(XX)
m andΣ(Y Y )

m and cross-covariance
matrices,Σ(Y X)

m andΣ(XY )
m , where they are diagonal matrices in

this paper. The GMM parameters are estimated by maximizing the
joint probability density given by Eq. (1).

2.2. Parameter Conversion [9]

Given theT -frame feature sequenceX =
[
X⊤

1 , · · · ,X⊤
T

]⊤
of the

source speaker’s voice, the converted parameter sequenceŷm̂ =[
ŷ⊤
1 , · · · , ŷ⊤

T

]⊤
is analytically determined by maximizing the con-

ditional probability of the target feature vectorY givenX under a
constraintY = Wy as follows:

ŷm̂ = argmax
y

P (Wy|X, m̂,λ) (3)
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m̂ Em̂, (4)

whereW is a2DT -by-DT weight matrix to calculate the dynamic
features [15].m̂ = [m̂1, · · · , m̂T ]

⊤ is the sub-optimum mixture
component sequence determined by maximizingP (m|X,λ), and
the other parameters are given by
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The notationdiag2D denotes the construction of a block diagonal
matrix that has the2D-by-2D diagonal elements. The converted pa-
rameter sequencêym̂ is efficiently calculated sequence by sequence
using the Cholesky decomposition [15], or recursively calculated
frame by frame using the low-delay conversion algorithm [18].

3. CONVENTIONAL GV-CONSTRAINED TRAINING
3.1. Global Variance (GV) [9]

The GVv (y) = [v (1) , · · · , v (D)]⊤ is defined as the second order
moment of the trajectoryy, and itsd-th component is given as

v (d) =
1

T

T∑
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)2

. (11)

3.2. Objective Function for GV-Constrained Training [16]

A part of the GMM parameter set,{Am, bm,Σ
(Y |X)
m } is updated

by maximizing the following objective functionLgv consisting of
the GMM and GV likelihoods:

Lgv = P (Wy|X, m̂,λ)P (v (y) |X, m̂,λ,λv)
2ωvT , (12)

P (v (y) |X, m̂,λ,λv) = N (v (y) ;v (ŷm̂) ,Σv) , (13)

whereωv is a weight of the GV likelihood,Σv is a covariance matrix
of the GV, andλv is a model parameter set of the GV. The GMM
and GV likelihoods are normalized by the ratio of the number of
feature dimensions whenωv = 1.0. This training algorithm updates
the model parameters to make the GV of the converted parameter
sequence close to natural one.

3.3. Parameter Conversion

The basic parameter conversion process is performed as described
in Section 2.2. The converted parameter sequenceŷm̂ is equivalent
to that determined by maximizingLgv under the constraintY =
Wy. Therefore,Lgv is also regarded as the objective function for
conversion although the constraint needs to be additionally used.

3.4. Problems

There is inconsistency of the optimization criterion between the
training and the conversion; i.e., the explicit relationship between
the static and dynamic features given byY = Wy is ignored in
training while it is considered in conversion. Therefore, the trained
model parameters are not optimum for conversion.

The GV likelihood is used as a penalty term to alleviate the over-
smoothness. Although it can improve the quality of the converted
speech, the improved quality is still far from the natural one.

4. IMPLEMENTATION OF TRAJECTORY TRAINING

In [19], the trajectory training has been implemented for the joint
probability density modeling in GMM-based voice conversion. In
this section, we present yet another implementation by reformulating
the conditional probability density function in Eq. (3) by imposing
the explicit relationship between the static and dynamic features.

4.1. Objective Function for Training and Conversion

The objective function for the trajectory training is written as:

Ltrj = P (y|X, m̂,λ) = N
(
y; ŷm̂,R−1

m̂

)
(14)

The mean vector̂ym̂ is given by Eq. (4) and the inter-frame cor-
relation is effectively modeled by the temporal covariance matrix
R−1

m̂ . In training, the GMM parameters are updated by maximizing
Ltrj. In conversion, the basic conversion process described in Sec-
tion 2.2 is performed. Note that the mean vectorŷm̂ is equivalent
to the generated parameter sequence in the basic conversion process.
Therefore,Ltrj can be regarded as the objective function not only
for training but also for conversion.

4.2. Estimation of Model Parameters

Here, letξA =
[
A⊤

1 , · · · ,A⊤
M

]⊤
, ξb =
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, and
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1
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M
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be the joint parameters of

Am, bm, andΣ(Y |X)
m

−1
over all mixture components, respectively.

To optimize these model parameters for the objective function, we
employ the steepest descent algorithm1 as follows:

ξ
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(i)
A + α

∂ logLtrj
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∣∣∣∣
ξA=ξ

(i)
A

, (15)

whereα is a learning rate, andi is an iteration index.ξb andΣ−1

are also optimized in the same manner. The gradients are given by:
∂ logLtrj

∂ξA
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m̂diag−1
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−Em̂ (ŷm̂ − y)⊤ W⊤ −W (ŷm̂ − y)E⊤
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1Closed form solutions also exist forξA andξb.
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whereSm̂ = [Sm̂1 , · · · ,Sm̂T ]
⊤⊗I2D is a2DT -by-2DM matrix,

Sm̂t is anM -dimensional vector of which them-th component is1
whenm = m̂t and otherwise are0, andI2D indicates the2D-by-
2D identity matrix.

In this paper, the traditional joint density training is firstly
performed to estimateλ. Then, the proposed algorithms up-
dates{ξA, ξb,Σ

−1} while keeping{ωm,µ(X)
m ,Σ

(XX)
m } constant.

Note that the sub-optimum mixture component sequencem̂ never
changes in this setting.

5. PROPOSED MODULATION
SPECTRUM-CONSTRAINED TRAJECTORY TRAINING

5.1. Modulation Spectrum

Whereas the GV represents the temporal scaling of the parameter
trajectory as a scalar value in each feature dimension, the MS ex-
plicitly represents the temporal fluctuation as a vector [17]. In this
paper, the MSs (y) of the parameter sequencey is defined as

s (y) =
[
s (1)⊤ , · · · , s (d)⊤ , · · · , s (D)⊤

]⊤
, (19)

s (d) =
[
sd (0) , · · · , sd (f) , · · · , sd

(
D′

s − 1
)]⊤

, (20)

sd (f) = R2
d,f + I2d,f (21)

=

(
T∑

t=1

yt (d) cos kt

)2

+

(
T∑

t=1

yt (d) sin kt

)2

,(22)

where2Ds is a length of Discrete Fourier Transform (DFT),k =
−πf/Ds is a modulation frequency, andD′

s is the number of MS
dimension in each feature dimension, whereD′

s < Ds.2 In this
paper, the MS is calculated utterance by utterance.

5.2. Proposed Objective Function

We integrate the MS compensation into the trajectory training. The
objective function consists of both the trajectory likelihood and the
MS likelihood as follows:

Lmstrj = P (y|X, m̂,λ)P (s (y) |X, m̂,λ,λs)
ωsT/D′

s , (23)

P (s (y) |X, m̂,λ,λs) = N (s (y) ; s (ŷm̂) ,Σs) , (24)

whereλs is a model parameter set of the MS, andΣs is aD′
sD-by-

D′
sD covariance matrix, andωs is a weight of the MS likelihood.

The trajectory likelihood and the MS likelihood are normalized by
the ratio of the number of feature dimensions whenωs = 1. Σ−1

s is

represented as
[
p(1)
s , · · · ,p(d)

s , · · · ,p(D)
s

]
, wherep(d)

s is D′
sD-by-

D matrix of which columns correspond tos (d). The MS likelihood
works as a penalty term to the reduction of the temporal fluctuation
of the converted parameter sequence.

5.3. Estimation of Model Parameters

The model parameters are estimated in the same way as the trajectory
training. LetLms be the MS likelihoodN (s (y) ; s (ŷm̂) ,Σs).
The logarithm function ofLmstrj is given by

logLmstrj = logLtrj + ωs
T

D′
s

logLms, (25)

2Because lower modulation frequency components mainly affect speech
perception [20, 21], only these components are considered in this paper.

and the gradients oflogLms are given as
∂ logLms
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s′
t = [st (1) , · · · , st (d) , · · · , st (D)]⊤ , (30)

st (d) = 2f t (d)p
(d)
s

⊤
(s (y)− s (ŷ)) , (31)

f t (d) =
[
ft,d (0) , · · · , ft,d (f) , · · · , ft,d

(
D′

s − 1
)]⊤

, (32)

ft,d (f) = R̂d,f cos kt+ Îd,f sin kt, (33)

whereR̂d,f andÎd,f are calculated using thed-th dimensional com-
ponents of̂ym̂.

5.4. Parameter Conversion

It is unnecessary to consider the MS in parameter conversion because
the GMM parameters are optimized to make the MS of the converted
parameter sequence close to the natural one. Consequently, the basic
parameter conversion algorithm is straightforwardly employed. If
the proposed objective functionLmstrj is used in the parameter con-
version, the converted parameter sequence to maximize it is equiv-
alent toŷm̂ which is analytically solved. Therefore, the proposed
framework can also be regarded as a unified framework between the
training and conversion process.

Because the MS involves the GV [17], the proposed MS-
constrained algorithm well recovers not only the MS but also the GV.
The GV is effectively recovered by the MS-constrained trajectory
training (“MSTRJ”) as observed in Fig. 1.

6. EXPERIMENTAL EVALUATION
6.1. Experimental Conditions

In our experiments, we prepared 2 English speakers (rms and slt)
in the CMU ARCTIC database [22]. We used 50 sentences were
selected for training and remaining 50 sentences for evaluation. We
trained the slt-to-rms GMM. Speech signals were sampled at 16 kHz.
The shift length was set to 5 ms. The 1st-through-24th mel-cepstral
coefficients were used as a spectral parameter and log-scaledF0 and
5 band-aperiodicity [23, 24] were used as excitation parameters. The
STRAIGHT analysis-synthesis system [25] was employed for pa-
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Fig. 1. An example of the GVs of the converted mel-cepstral coeffi-
cients (“nat” indicates natural speech parameter trajectories).
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rameter extraction and waveform generation. The spectral parame-
ters and aperiodic components were converted through a 64-mixture
GMM and a 16-mixture GMM, respectively. The log-scaledF0 was
linearly converted. The DFT length to calculate MS was set to 2048
that covers the length of all training utterances. The conventional
GV-constrained training algorithm and the proposed algorithms were
applied only to spectral component, and the likelihood weightωv

andωs were set to1.0. According to the results of our preliminary
test3, D′

s was set toDs/2 (= 50 Hz).
We compared the following training algorithms:

BASIC： Basic training [8]
GV： Conventional training considering the GV [16]
TRJ： Proposed trajectory training
MSTRJ： Proposed trajectory training considering the MS

The trajectory likelihood and the MS likelihood for the natural pa-
rameter trajectories of the evaluation data were firstly calculated to
analyze the effect of the proposed algorithms. Then, the speech qual-
ity and the speaker individuality of the converted speech are evalu-
ated in the perceptual evaluation.

6.2. Objective Evaluation

Fig. 2 and Fig. 3 illustrate the trajectory likelihoodLtrj and the MS
likelihood Lms for the natural parameter trajectories of the evalua-
tion data, respectively. The trajectory likelihood is normalized by the
total number of framesT . The trajectory training (“TRJ”) slightly
improves the MS likelihood as well as the trajectory likelihood com-
pared to the basic training (“BASIC”). This result shows that the
proposed trajectory training models the parameter trajectories more
accurately than the basic training.

The MS-constrained trajectory training (“MSTRJ”) well im-
proves the MS likelihood than the other algorithms. This result
demonstrates that the MS of the converted parameter trajectory is
well recovered by “MSTRJ.” It is observed that the trajectory likeli-
hood is significantly degraded by the conventional GV-constrained
training (“GV”). This is because “GV” uses the inconsistent criteria
between training and conversion. This likelihood degradation is
reduced by “MSTRJ.”

6.3. Subjective Evaluation

In the evaluation of the speech quality, a preference test (AB test)
was conducted. We presented every pair of converted speech of 4 al-
gorithms in a random order, and we forced listeners to select speech
sample that sounds better quality. Similarity, XAB test on speaker
individuality was conducted using the analysis-synthesized speech
as a reference “X.” 6 listeners participated in each assessment.

The results are illustrated in Fig. 4 and Fig. 5. It is observed that
“TRJ” has higher scores than “BASIC” in term of both the speech
quality and the speaker individuality. On the other hand, the scores
of “TRJ” are lower than “GV.” Therefore, the effect of the GV com-
pensation on the converted speech is larger than that of the trajectory
training. We can see that “MSTRJ” achieves the best scores than
others in term of the speech quality. This result demonstrates that
the proposed MS-constrained trajectory training yields the best per-
formance among these training methods.

3We conducted the preliminary subjective test to investigate the quality-
wise effect of higher modulation frequency component of MS. As a result,
there is no significant difference in quality between analysis-synthesized
speech and the speech that MS over 50 Hz was cut.
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Fig. 2. Trajectory likelihood for
the natural parameter trajectories.
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Fig. 3. MS likelihood for the nat-
ural parameter trajectories.

��������� 	�
 ���� �������������

�����

�����

�����

�����

� ���

 !"
# "!"
$%"
&%
'!"

Fig. 4. Preference scores on
speech quality with 95 % confi-
dence intervals.
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Fig. 5. Preference scores on
speaker individuality with 95 %
confidence intervals.

7. CONCLUSION

This paper have proposed novel training algorithms for GMM-based
voice conversion in order to produce the high-quality speech while
preserving the computationally-efficient conversion algorithm. Tra-
ditional GMM have been firstly reformulated as the trajectory model
called “trajectory GMM,” then, the Modulation Spectrum (MS) have
been integrated into the trajectory training. The experimental results
yielded the significant improvements in term of both the speech qual-
ity and the speaker individuality of the converted speech. As future
work, we will implement the proposed algorithm for HMM-based
speech synthesis, and apply the proposed algorithm to the voice con-
version for arbitrary speakers [26, 27].
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